Skip to content
Related Articles

Related Articles

sciPy stats.cumfreq() function | Python

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 15 Jan, 2022

scipy.stats.cumfreq(a, numbins, defaultreallimits, weights) works using the histogram function and calculates the cumulative frequency histogram. It includes cumulative frequency binned values, width of each bin, lower real limit, extra points. 

Parameters : 
arr : [array_like] input array. 
numbins : [int] number of bins to use for the histogram. [Default = 10] 
defaultlimits : (lower, upper) range of the histogram. 
weights : [array_like] weights for each array element. 
Results : 
– cumulative frequency binned values 
– width of each bin 
– lower real limit 
– extra points. 

Code #1: 

Python3




# cumulative frequency
from scipy import stats
import numpy as np 
   
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
   
a, b, c, d = stats.cumfreq(arr1, numbins = 4)
   
print ("cumulative frequency : ", a)
print ("Lower Limit : ", b)
print ("bin size : ", c)
print ("extra-points : ", d)

Output: 

Array element :  [1, 3, 27, 2, 5, 13] 

cumulative frequency :  [ 4.  5.  5.  6.]
Lower Limit :  -3.33333333333
bin size :  8.66666666667
extra-points :  0

 

Code #2: 

Python3




# cumulative frequency
from scipy import stats
import numpy as np 
   
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
   
a, b, c, d = stats.cumfreq(arr1, numbins = 4,
              weights = [.1, .2, .1, .3, 1, 6])
   
print ("cumfreqs : ", a)
print ("lowlim : ", b)
print ("binsize : ", c)
print ("extrapoints : ", d)

Output: 

Array element :  [1, 3, 27, 2, 5, 13] 

cumfreqs :  [ 1.6  7.6  7.6  7.7]
lowlim :  -3.33333333333
binsize :  8.66666666667
extrapoints :  0

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!