Skip to content
Related Articles

Related Articles

sciPy stats.cumfreq() function | Python
  • Last Updated : 13 Feb, 2019

scipy.stats.cumfreq(a, numbins, defaultreallimits, weights) works using the histogram function and calculates the cumulative frequency histogram. It includes cumulative frequency binned values, width of each bin, lower real limit, extra points.

Parameters :
arr : [array_like] input array.
numbins : [int] number of bins to use for the histogram. [Default = 10]
defaultlimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.

Results :
– cumulative frequency binned values
– width of each bin
– lower real limit
– extra points.

Code #1:




# cumulative frequency
from scipy import stats
import numpy as np 
  
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
  
a, b, c, d = stats.cumfreq(arr1, numbins = 4)
  
print ("cumulative frequency : ", a)
print ("Lower Limit : ", b)
print ("bin size : ", c)
print ("extra-points : ", d)
Output:



Array element :  [1, 3, 27, 2, 5, 13] 

cumulative frequency :  [ 4.  5.  5.  6.]
Lower Limit :  -3.33333333333
bin size :  8.66666666667
extra-points :  0

 
Code #2:




# cummulative frequency
from scipy import stats
import numpy as np 
  
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
  
a, b, c, d = stats.cumfreq(arr1, numbins = 4,
              weights = [.1, .2, .1, .3, 1, 6])
  
print ("cumfreqs : ", a)
print ("lowlim : ", b)
print ("binsize : ", c)
print ("extrapoints : ", d)
Output:
Array element :  [1, 3, 27, 2, 5, 13] 

cumfreqs :  [ 1.6  7.6  7.6  7.7]
lowlim :  -3.33333333333
binsize :  8.66666666667
extrapoints :  0

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :