sciPy stats.cumfreq() function | Python

scipy.stats.cumfreq(a, numbins, defaultreallimits, weights) works using the histogram function and calculates the cumulative frequency histogram. It includes cumulative frequency binned values, width of each bin, lower real limit, extra points.

Parameters :
arr : [array_like] input array.
numbins : [int] number of bins to use for the histogram. [Default = 10]
defaultlimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.

Results :
– cumulative frequency binned values
– width of each bin
– lower real limit
– extra points.



Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# cumulative frequency
from scipy import stats
import numpy as np 
  
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
  
a, b, c, d = stats.cumfreq(arr1, numbins = 4)
  
print ("cumulative frequency : ", a)
print ("Lower Limit : ", b)
print ("bin size : ", c)
print ("extra-points : ", d)

chevron_right


Output:

Array element :  [1, 3, 27, 2, 5, 13] 

cumulative frequency :  [ 4.  5.  5.  6.]
Lower Limit :  -3.33333333333
bin size :  8.66666666667
extra-points :  0

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# cummulative frequency
from scipy import stats
import numpy as np 
  
arr1 = [1, 3, 27, 2, 5, 13
print ("Array element : ", arr1, "\n")
  
a, b, c, d = stats.cumfreq(arr1, numbins = 4,
              weights = [.1, .2, .1, .3, 1, 6])
  
print ("cumfreqs : ", a)
print ("lowlim : ", b)
print ("binsize : ", c)
print ("extrapoints : ", d)

chevron_right


Output:

Array element :  [1, 3, 27, 2, 5, 13] 

cumfreqs :  [ 1.6  7.6  7.6  7.7]
lowlim :  -3.33333333333
binsize :  8.66666666667
extrapoints :  0


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.