sciPy stats.bayes_mvs() function | Python

scipy.stats.bayes_mvs(arr, alpha) function computes mean, variance and standard deviation in the given Bayesian confidence interval.

Parameters :
arr : [array_like] The input data can be multidimensional but will be flattened before use.
alpha : Probability that the returned confidence interval contains the true parameter.

Results : mean, variance and standard deviation in the given Bayesian confidence interval.



Code #1: Working

filter_none

edit
close

play_arrow

link
brightness_4
code

# stats.bayes_mvs() method   
import numpy as np
from scipy import stats
    
arr1 = [[20, 2, 7, 1, 34],
        [50, 12, 12, 34, 4]]
  
arr2 = [50, 12, 12, 34, 4]
  
print ("\narr1 : ", arr1)
print ("\narr2 : ", arr2)
  
mean, var, std = stats.bayes_mvs(arr1, 0.9)
  
print ("\nMean of array1 : ", mean)
print ("\nvar of array1 : ", var)
print ("\nstd of array1 : ", std)
  
mean, var, std = stats.bayes_mvs(arr2, 0.5)
  
print ("\nMean of array2 : ", mean)
print ("\nvar of array2 : ", var)
print ("\nstd of array2 : ", std)
  

chevron_right


Output :

arr1 : [[20, 2, 7, 1, 34], [50, 12, 12, 34, 4]]

arr2 : [50, 12, 12, 34, 4]

Mean of array1 : Mean(statistic=17.6, minmax=(7.99212522273964, 27.207874777260358))

var of array1 : Variance(statistic=353.2, minmax=(146.13176149159307, 743.5537128176551))

std of array1 : Std_dev(statistic=18.136411760663574, minmax=(12.088497073316974, 27.26818132581737))

Mean of array2 : Mean(statistic=22.4, minmax=(16.090582413339323, 28.709417586660674))

var of array2 : Variance(statistic=725.6, minmax=(269.47585801746374, 754.8278687119639))

std of array2 : Std_dev(statistic=23.872262300862655, minmax=(16.415719844632576, 27.474130900029646))

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.