Skip to content
Related Articles

Related Articles

Improve Article
scipy stats.arcsine() | Python
  • Last Updated : 20 Mar, 2019

scipy.stats.arcsine() is an arcsine continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : arcsine continuous random variable

Code #1 : Creating arcsine continuous random variable




# importing scipy
from scipy.stats import arcsine
  
numargs = arcsine.numargs
[ ] = [0.6, ] * numargs
rv = arcsine()
  
print ("RV : \n", rv)

Output :



RV :  
<scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8>

Code #2 : arcsine random variates and probability distribution function.




quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = arcsine.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = arcsine.pdf(x = quantile, scale = 2)
print ("\nProbability Distribution : \n", R)

Output:

Random Variates : 
 [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451
 1.9644408  0.35014597 0.26798525 0.24599504]

Probability Distribution : 
 [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505
 0.34568283 0.33260295 0.32421577 0.31960693]

Code #3 : Graphical Representation.




# libraries
import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print ("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]

Code #4: Varying Location and Scale




from scipy.stats import arcsine
import matplotlib.pyplot as plt
import numpy as np
a = 2
b = 2
x = np.linspace(0, np.minimum(rv.dist.b, 3))
  
# Varying location and scale
y1 = arcsine.pdf(x, -0.1, .8)
y2 = arcsine.pdf(x, -3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :