Given three integers **a**, **b** and **c** such that **a + b + c = 0**. The task is to find the roots of a quadratic equation **ax ^{2} + bx + c = 0**.

**Examples:**

Input:a = 1, b = 2, c = -3Output:1, -3Input:a = -5, b = 3, c = 2Output:1, -2.5

**Approach:** When **a + b + c = 0** then the roots of the equation **ax ^{2} + bx + c = 0** are always

**1**and

**c / a**.

For example,

Take a = 3, b = 2 and c = -5 such that a + b + c = 0

Now, the equation will be 3x^{2}+ 2x – 5 = 0

Solving for x,

3x^{2}+ 5x – 3x – 5 = 0

x * (3x + 5) -1 * (3x + 5) = 0

(x – 1) * (3x + 5) = 0x = 1, x = (-5 / 3) = (c / a)

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to print the roots of the` `// quadratic equation when a + b + c = 0` `void` `printRoots(` `long` `a, ` `long` `b, ` `long` `c)` `{` ` ` `cout << 1 << ` `", "` `<< c / (a * 1.0);` `}` `// Driver code` `int` `main()` `{` ` ` `long` `a = 2;` ` ` `long` `b = 3;` ` ` `long` `c = -5;` ` ` `printRoots(a, b, c);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` ` ` ` ` `// Function to print the roots of the` ` ` `// quadratic equation when a + b + c = 0` ` ` `static` `void` `printRoots(` `long` `a, ` `long` `b, ` `long` `c)` ` ` `{` ` ` `System.out.println(` `1` `+ ` `", "` `+ c / (a * ` `1.0` `));` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `long` `a = ` `2` `;` ` ` `long` `b = ` `3` `;` ` ` `long` `c = -` `5` `;` ` ` `printRoots(a, b, c);` ` ` `}` `}` `// This code is contributed by` `// sanjeev2552` |

## Python3

`# Python3 implementation of the approach` `# Function to print the roots of the` `# quadratic equation when a + b + c = 0` `def` `printRoots(a, b, c):` ` ` `print` `(` `1` `, ` `","` `, c ` `/` `(a ` `*` `1.0` `))` `# Driver code` `a ` `=` `2` `b ` `=` `3` `c ` `=` `-` `5` `printRoots(a, b, c)` `# This code is contributed by Mohit Kumar` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` `// Function to print the roots of the` `// quadratic equation when a + b + c = 0` `static` `void` `printRoots(` `long` `a, ` `long` `b, ` `long` `c)` `{` ` ` `Console.WriteLine(` `"1, "` `+ c / (a * 1.0));` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `long` `a = 2;` ` ` `long` `b = 3;` ` ` `long` `c = -5;` ` ` `printRoots(a, b, c);` `}` `}` `// This code is contributed by Nidhi` |

## PHP

`<?php` `// PHP implementation of the approach` `// Function to print the roots of the` `// quadratic equation when a + b + c = 0` `function` `printRoots(` `$a` `, ` `$b` `, ` `$c` `)` `{` ` ` `echo` `"1"` `;` ` ` `echo` `", "` `;` ` ` `echo` `$c` `/ (` `$a` `* 1.0);` `}` `// Driver code` `$a` `= 2;` `$b` `= 3;` `$c` `= -5;` `printRoots(` `$a` `, ` `$b` `, ` `$c` `);` `// This code is contributed by Naman_Garg.` `?>` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to print the roots of the` `// quadratic equation when a + b + c = 0` `function` `printRoots(a, b, c)` `{` ` ` `document.write(1 + ` `", "` `+ c / (a * 1.0));` `}` `// Driver code` `var` `a = 2;` `var` `b = 3;` `var` `c = -5;` `printRoots(a, b, c);` `// This code is contributed by noob2000.` `</script>` |

**Output:**

1, -2.5

**Time Complexity:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **Geeks Classes Live**