Consecutive steps to roof top

Given heights of consecutive buildings, find the maximum number of consecutive steps one can put forward such that he gain a increase in altitude while going from roof of one building to next adjacent one.

Examples :

Input : arr[] = {1, 2, 2, 3, 2}
Output : 1
Explanation :
Maximum consecutive steps from 1 to 2 OR  2 to 3.

Input : arr[] = {1, 2, 3, 4}
Output : 3

This problem is basically a variation of Longest increasing subarray

Approach:-

initialize count = 0
initialize maximum = 0
    if arr[i]>a[i-1]
then count increment
    else
maximum = max(maximum, count)

at the end maximum=max(maximum, count)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to find maximum 
// number of consecutive steps.
#include <bits/stdc++.h>
using namespace std;
  
// Function to count consecutive steps
int find_consecutive_steps(int arr[], int len)
{
    int count = 0;
    int maximum = 0;
  
    for (int index = 1; index < len; index++) {
          
        // count the number of consecutive 
        // increasing height building
        if (arr[index] > arr[index - 1])
            count++;
        else
        {
            maximum = max(maximum, count);
            count = 0;
        }
    }
      
    return max(maximum, count);    
}
  
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int len = sizeof(arr) / sizeof(arr[0]);
  
    cout << find_consecutive_steps(arr, len);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find maximum 
// number of consecutive steps.
import java.io.*;
  
class GFG {
      
    // Function to count consecutive steps
    static int find_consecutive_steps(int arr[],
                                        int len)
    {
        int count = 0;
        int maximum = 0;
      
        for (int index = 1; index < len; index++) {
              
            // count the number of consecutive 
            // increasing height building
            if (arr[index] > arr[index - 1])
                count++;
            else
            {
                maximum = Math.max(maximum, count);
                count = 0;
            }
        }
          
        return Math.max(maximum, count); 
    }
      
    // Driver code
    public static void main (String[] args) {
          
        int arr[] = { 1, 2, 3, 4 };
        int len = arr.length;
       
        System.out.println(find_consecutive_steps(arr,
                                                len));
    }
}
  
// This code is contributed by Gitanjali.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find maximum 
# number of consecutive steps
import math
  
# Function to count consecutive steps
def find_consecutive_steps(arr, len):
  
    count = 0; maximum = 0
  
    for index in range(1, len):
          
        # count the number of consecutive 
        # increasing height building
        if (arr[index] > arr[index - 1]):
            count += 1
              
        else:
            maximum = max(maximum, count)
            count = 0
      
    return max(maximum, count)
  
# Driver code
arr = [ 1, 2, 3, 4 ]
len = len(arr)
print(find_consecutive_steps(arr, len))
  
  
# This code is contributed by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find maximum 
// number of consecutive steps.
using System;
  
class GFG {
      
    // Function to count consecutive steps
    static int find_consecutive_steps(int []arr,
                                        int len)
    {
        int count = 0;
        int maximum = 0;
      
        for (int index = 1; index < len; index++) {
              
            // count the number of consecutive 
            // increasing height building
            if (arr[index] > arr[index - 1])
                count++;
            else
            {
                maximum = Math.Max(maximum, count);
                count = 0;
            }
        }
          
        return Math.Max(maximum, count); 
    }
      
    // Driver code
    public static void Main () {
          
        int []arr = { 1, 2, 3, 4 };
        int len = arr.Length;
      
        Console.WriteLine(find_consecutive_steps(arr,
                                                len));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to find maximum 
// number of consecutive steps.
  
  
// Function to count
// consecutive steps
function find_consecutive_steps($arr
                                $len)
{
    $count = 0;
    $maximum = 0;
  
    for ($index = 1; $index < $len
                          $index++) 
    {
          
        // count the number of consecutive 
        // increasing height building
        if ($arr[$index] > $arr[$index - 1])
            $count++;
        else
        {
            $maximum = max($maximum, $count);
            $count = 0;
        }
    }
      
    return max($maximum, $count); 
}
  
// Driver code
$arr = array( 1, 2, 3, 4 );
$len = count($arr);
  
echo find_consecutive_steps($arr, $len);
  
// This code is contributed by vt_m. 
?>

chevron_right



Output :

3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m

Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.