# Right most non-zero digit in multiplication of array elements

Given an array arr[] of N non-negative integers. The task is to find the right most non zero digit in the product of array elements.

Examples:

Input: arr[] = {3, 5, 6, 90909009}
Output: 7

Input: arr[] = {7, 42, 11, 64}
Output: 6
Result of multiplication is 206976
So the rightmost digit is 6

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. The question is too much simple if you know basic maths. It is given that you have to find the rightmost positive digit. Now a digit is made multiple of 10, if there are 2 and 5. They produce a number with last digit 0.
2. Now what we can do is divide each array element into its shortest divisible form by 5 and increase count of such occurrences.
3. Now divide each array element into its shortest divisible form by 2 and decrease count of such occurrences. This way we are not considering the multiplication of 2 and a 5 in our multiplication.
4. Set the multiplier value as either 1 or 5 in case count of 5 is not 0 after above two loops.
5. Multiply each array variable now and store just last digit by taking remainder by 10

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the rightmost non-zero ` `// digit in the multiplication ` `// of the array elements ` `int` `rightmostNonZero(``int` `a[], ``int` `n) ` `{ ` `    ``// To store the count of times 5 can ` `    ``// divide the array elements ` `    ``int` `c5 = 0; ` ` `  `    ``// Divide the array elements by 5 ` `    ``// as much as possible ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``while` `(a[i] > 0 && a[i] % 5 == 0) { ` `            ``a[i] /= 5; ` `            ``// increase count of 5 ` `            ``c5++; ` `        ``} ` `    ``} ` ` `  `    ``// Divide the array elements by ` `    ``// 2 as much as possible ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``while` `(c5 && a[i] > 0 && !(a[i] & 1)) { ` `            ``a[i] >>= 1; ` ` `  `            ``// Decrease count of 5, because a '2' and ` `            ``// a '5' makes a number with last digit '0' ` `            ``c5--; ` `        ``} ` `    ``} ` `    ``long` `long` `ans = 1; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``ans = (ans * a[i] % 10) % 10; ` `    ``} ` ` `  `    ``// If c5 is more than the multiplier ` `    ``// should be taken as 5 ` `    ``if` `(c5) ` `        ``ans = (ans * 5) % 10; ` ` `  `    ``if` `(ans) ` `        ``return` `ans; ` ` `  `    ``return` `-1; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 7, 42, 11, 64 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``cout << rightmostNonZero(a, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to return the rightmost non-zero ` `// digit in the multiplication ` `// of the array elements ` `static` `int` `rightmostNonZero(``int` `a[], ``int` `n) ` `{ ` `    ``// To store the count of times 5 can ` `    ``// divide the array elements ` `    ``int` `c5 = ``0``; ` ` `  `    ``// Divide the array elements by 5 ` `    ``// as much as possible ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``while` `(a[i] > ``0` `&& a[i] % ``5` `== ``0``) ` `        ``{ ` `            ``a[i] /= ``5``; ` `             `  `            ``// increase count of 5 ` `            ``c5++; ` `        ``} ` `    ``} ` ` `  `    ``// Divide the array elements by ` `    ``// 2 as much as possible ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``while` `(c5 != ``0` `&& a[i] > ``0` `&&  ` `                         ``(a[i] & ``1``) == ``0``)  ` `        ``{ ` `            ``a[i] >>= ``1``; ` ` `  `            ``// Decrease count of 5, because a '2' and ` `            ``// a '5' makes a number with last digit '0' ` `            ``c5--; ` `        ``} ` `    ``} ` `     `  `    ``int` `ans = ``1``; ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` `        ``ans = (ans * a[i] % ``10``) % ``10``; ` `    ``} ` ` `  `    ``// If c5 is more than the multiplier ` `    ``// should be taken as 5 ` `    ``if` `(c5 != ``0``) ` `        ``ans = (ans * ``5``) % ``10``; ` ` `  `    ``if` `(ans != ``0``) ` `        ``return` `ans; ` ` `  `    ``return` `-``1``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `a[] = { ``7``, ``42``, ``11``, ``64` `}; ` `    ``int` `n = a.length; ` ` `  `    ``System.out.println(rightmostNonZero(a, n)); ` `} ` `} ` ` `  `// This code is contributed by ` `// Surendra_Gangwar `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function to return the rightmost non-zero ` `# digit in the multiplication ` `# of the array elements ` `def` `rightmostNonZero(a, n): ` `     `  `    ``# To store the count of times 5 can ` `    ``# divide the array elements ` `    ``c5 ``=` `0` ` `  `    ``# Divide the array elements by 5 ` `    ``# as much as possible ` `    ``for` `i ``in` `range``(n): ` `        ``while` `(a[i] > ``0` `and` `a[i] ``%` `5` `=``=` `0``): ` `            ``a[i] ``/``/``=` `5` `             `  `            ``# increase count of 5 ` `            ``c5 ``+``=` `1` ` `  `    ``# Divide the array elements by ` `    ``# 2 as much as possible ` `    ``for` `i ``in` `range``(n): ` `        ``while` `(c5 ``and` `a[i] > ``0` `and` `(a[i] & ``1``) ``=``=` `0``): ` `            ``a[i] >>``=` `1` ` `  `            ``# Decrease count of 5, because a '2' and ` `            ``# a '5' makes a number with last digit '0' ` `            ``c5 ``-``=` `1` ` `  `    ``ans ``=` `1` `    ``for` `i ``in` `range``(n): ` `        ``ans ``=` `(ans ``*` `a[i] ``%` `10``) ``%` `10` ` `  `    ``# If c5 is more than the multiplier ` `    ``# should be taken as 5 ` `    ``if` `(c5): ` `        ``ans ``=` `(ans ``*` `5``) ``%` `10` ` `  `    ``if` `(ans): ` `        ``return` `ans ` ` `  `    ``return` `-``1` ` `  `# Driver code ` `a ``=` `[``7``, ``42``, ``11``, ``64``] ` `n ``=` `len``(a) ` ` `  `print``(rightmostNonZero(a, n)) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to return the rightmost non-zero ` `// digit in the multiplication ` `// of the array elements ` `static` `int` `rightmostNonZero(``int``[] a, ``int` `n) ` `{ ` `     `  `    ``// To store the count of times 5 can ` `    ``// divide the array elements ` `    ``int` `c5 = 0; ` ` `  `    ``// Divide the array elements by 5 ` `    ``// as much as possible ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``while` `(a[i] > 0 && a[i] % 5 == 0) ` `        ``{ ` `            ``a[i] /= 5; ` `             `  `            ``// increase count of 5 ` `            ``c5++; ` `        ``} ` `    ``} ` ` `  `    ``// Divide the array elements by ` `    ``// 2 as much as possible ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``while` `(c5 != 0 && a[i] > 0 &&  ` `                         ``(a[i] & 1) == 0)  ` `        ``{ ` `            ``a[i] >>= 1; ` ` `  `            ``// Decrease count of 5, because a '2' and ` `            ``// a '5' makes a number with last digit '0' ` `            ``c5--; ` `        ``} ` `    ``} ` `     `  `    ``int` `ans = 1; ` `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` `        ``ans = (ans * a[i] % 10) % 10; ` `    ``} ` ` `  `    ``// If c5 is more than the multiplier ` `    ``// should be taken as 5 ` `    ``if` `(c5 != 0) ` `        ``ans = (ans * 5) % 10; ` ` `  `    ``if` `(ans != 0) ` `        ``return` `ans; ` ` `  `    ``return` `-1; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int``[] a = { 7, 42, 11, 64 }; ` `    ``int` `n = a.Length; ` ` `  `    ``Console.WriteLine(rightmostNonZero(a, n)); ` `} ` `} ` ` `  `// This code is contributed by ` `// Code_@Mech `

Output:

```6
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.