Reverse tree path using Queue

Given a tree and a node, the task is to reverse the path till the given Node and print the in-order traversal of the modified tree.

Examples:

Input:  
             7
           /   \
          6     5
         / \   / \
        4   3 2   1    
Node = 4 
Output: 7 6 3 4 2 5 1
The path from root to node 4 is 7 -> 6 -> 4
Reversing this path, the modified tree will be:
             4
           /   \
          6     5
         / \   / \
        7   3 2   1 
whose in-order traversal is 7 6 3 4 2 5 1

Input:
            7
         /    \
        6       5
       / \     / \
      4  3     2  1   
Node = 2 
Output: 4 6 3 2 7 5 1

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// Function to reverse the tree path
queue<int> reverseTreePathUtil(Node* root, int data,
                               queue<int> q1)
{
    queue<int> emptyQueue;
  
    // If root is null then return
    // an empty queue
    if (root == NULL)
        return emptyQueue;
  
    // If the node is found
    if (root->data == data) {
  
        // Replace it with the queue's front
        q1.push(root->data);
        root->data = q1.front();
        q1.pop();
        return q1;
    }
  
    // Push data into the queue for
    // storing data from start to end
    q1.push(root->data);
  
    // If the returned queue is empty then
    // it means that the left sub-tree doesn't
    // contain the required node
    queue<int> left = reverseTreePathUtil(root->left,
                                          data, q1);
  
    // If the returned queue is empty then
    // it means that the right sub-tree doesn't
    // contain the required node
    queue<int> right = reverseTreePathUtil(root->right,
                                           data, q1);
  
    // If the required node is found
    // in the right sub-tree
    if (!right.empty()) {
  
        // Replace with the queue's front
        root->data = right.front();
        right.pop();
        return right;
    }
  
    // If the required node is found
    // in the right sub-tree
    if (!left.empty()) {
  
        // Replace with the queue's front
        root->data = left.front();
        left.pop();
        return left;
    }
  
    // Return emptyQueue if path
    // is not found
    return emptyQueue;
}
  
// Function to call reverseTreePathUtil
// to reverse the tree path
void reverseTreePath(Node* root, int data)
{
    queue<int> q1;
    // reverse tree path
    reverseTreePathUtil(root, data, q1);
}
  
// Function to print the in-order
// traversal of the tree
void inorder(Node* root)
{
    if (root != NULL) {
        inorder(root->left);
        cout << root->data << " ";
        inorder(root->right);
    }
}
  
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Driver code
int main()
{
    Node* root = newNode(7);
    root->left = newNode(6);
    root->right = newNode(5);
    root->left->left = newNode(4);
    root->left->right = newNode(3);
    root->right->left = newNode(2);
    root->right->right = newNode(1);
  
    int data = 4;
  
    // Function call to reverse the path
    reverseTreePath(root, data);
  
    // Print the in-order traversal
    // of the modified tree
    inorder(root);
  
    return 0;
}
chevron_right

Output:
7 6 3 4 2 5 1

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :