Reverse Diagonal elements of matrix

Given a square matrix of order n*n, we have to reverse the elements of both diagonals.

Examples:

Input : {1, 2, 3,
         4, 5, 6,
         7, 8, 9}
Output :{9, 2, 7,
         4, 5, 6,
         3, 8, 1}
Explanation: 
             Major Diagonal Elements before:  1 5 9
                             After reverse:   9 5 1
             Minor Diagonal Elements before:  3 5 7
                             After reverse:   7 5 3 
Input :{1,  2,  3,  4,
        5,  6,  7,  8,
        9,  10, 11, 12,
        13, 14, 15, 16}

Output :{16, 2, 3, 13,
         5, 11, 10, 8,
         9, 7,  6,  12,
         4, 14, 15, 1}
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
#define N 4
  
// Function to swap diagonals elements
void reverseDiagonal(int array[][N])
{
    int i = 0, j = N;    
    while (i < j) {
  
        // For reversing elements of major
        // diagonal.
        swap(array[i][i], array[j - 1][j - 1]);
  
        // For reversing elements of minor
        // diagonal.
        swap(array[i][j - 1], array[j - 1][i]);
  
        i++;
        j--;
    }
  
    // Print matrix after reversals.
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j)
            printf("%d  ", array[i][j]);
        printf("\n");
    }
}
  
// Driver function
int main()
{
    int matrix[N][N] = { 1, 2,  3,  4,
                         5, 6,  7,  8,
                         9, 10, 11, 12,
                        13, 14, 15, 16 };
    reverseDiagonal(matrix);
      
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to Reverse 
// Diagonal elements of matrix
import java.io.*;
  
class GFG 
{
static int N = 4;
  
// Function to swap 
// diagonals elements
static void reverseDiagonal(int array[][])
{
    int i = 0, j = N; 
    int temp = 0;
    while (i < j)
    {
  
        // For reversing elements 
        // of major diagonal.
      
        temp = array[i][i];
        array[i][i] = array[j - 1][j - 1];
        array[j - 1][j - 1] = temp;
  
        // For reversing elements 
        // of minor diagonal.
  
        temp = array[i][j - 1];
        array[i][j - 1] = array[j - 1][i];
        array[j - 1][i] = temp;
  
        i++;
        j--;
    }
  
    // Print matrix after 
    // reversals.
    for (i = 0; i < N; ++i) 
    {
        for (j = 0; j < N; ++j)
            System.out.print(array[i][j] + " ");
            System.out.println();
    }
}
  
// Driver Code
public static void main (String[] args)
{
    int matrix[][] = {{1, 2, 3, 4},
                      {5, 6, 7, 8},
                      {9, 10, 11, 12},
                      {13, 14, 15, 16}};
    reverseDiagonal(matrix);
}
}
  
// This code is contributed 
// by anuj_67.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to Reverse 
# Diagonal elements of matrix
  
N = 4
   
# Function to swap diagonals elements
def reverseDiagonal(array):
  
    i = 0
    j = N
    while (i < j) :
   
        # For reversing elements of major
        # diagonal.
        array[i][i], array[j - 1][j - 1] = array[j-1][j-1], array[i][i]
   
        # For reversing elements of minor
        # diagonal.
        array[i][j - 1], array[j - 1][i] = array[j-1][i], array[i][j-1]
   
        i += 1
        j -= 1
   
    # Print matrix after reversals.
    for i in range(N):
        for j in range( N):
            print( array[i][j],end="  ")
        print()
   
# Driver function
if __name__ == "__main__":
      
    matrix = [[ 1, 234],
                        [5, 678],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16 ]]
    reverseDiagonal(matrix)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to Reverse 
// Diagonal elements of matrix
using System;
  
class GFG 
{
static int N = 4;
  
// Function to swap 
// diagonals elements
static void reverseDiagonal(int [,]array)
{
    int i = 0, j = N; 
    int temp = 0;
    while (i < j)
    {
  
        // For reversing elements 
        // of major diagonal.
      
        temp = array[i, i];
        array[i, i] = array[j - 1, j - 1];
        array[j - 1, j - 1] = temp;
  
        // For reversing elements 
        // of minor diagonal.
  
        temp = array[i, j - 1];
        array[i, j - 1] = array[j - 1, i];
        array[j - 1, i] = temp;
  
        i++;
        j--;
    }
  
    // Print matrix after 
    // reversals.
    for (i = 0; i < N; ++i) 
    {
        for (j = 0; j < N; ++j)
            Console.Write(array[i, j] + " ");
            Console.WriteLine();
    }
}
  
// Driver Code
public static void Main ()
{
    int [,]matrix = {{1, 2, 3, 4},
                     {5, 6, 7, 8},
                     {9, 10, 11, 12},
                     {13, 14, 15, 16}};
    reverseDiagonal(matrix);
}
}
  
// This code is contributed 
// by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to Reverse 
// Diagonal elements of matrix
  
// Function to swap 
// diagonals elements
function reverseDiagonal($array)
{
    $N = 4;
    $i = 0; $j = $N
    $temp = 0;
    while ($i < $j)
    {
  
        // For reversing elements 
        // of major diagonal.
      
        $temp = $array[$i][$i];
        $array[$i][$i] = $array[$j - 1][$j - 1];
        $array[$j - 1][$j - 1] = $temp;
  
        // For reversing elements 
        // of minor diagonal.
  
        $temp = $array[$i][$j - 1];
        $array[$i][$j - 1] = $array[$j - 1][$i];
        $array[$j - 1][$i] = $temp;
  
        $i++;
        $j--;
    }
  
    // Print matrix after 
    // reversals.
    for ($i = 0; $i < $N; ++$i
    {
        for ($j = 0; $j < $N; ++$j)
            echo $array[$i][$j] . " ";
            echo "\n";
    }
}
  
// Driver Code
$matrix = array(array(1, 2, 3, 4),
                array(5, 6, 7, 8),
                array(9, 10, 11, 12),
                array(13, 14, 15, 16));
                  
reverseDiagonal($matrix);
  
// This code is contributed 
// by Akanksha Rai

chevron_right


Output:

16  2  3  13  
5  11  10  8  
9  7  6  12  
4  14  15  1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Ita_c, Akanksha_Rai



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.