# Reverse a subarray to maximize sum of even-indexed elements of given array

Given an array arr[], the task is to maximize the sum of even-indexed elements by reversing a subarray and print the maximum sum obtained.

Examples:

Input: arr[] = {1, 2, 1, 2, 1}
Output: 5
Explanation:
Sum of intial even-indexed elements = a[0] + a[2] + a[4] = 1 + 1 + 1 = 3
Reversing subarray {1, 2, 1, 2} modifies the array to {2, 1, 2, 1, 1}.
Hence, the maximized sum = 2 + 2 + 1 = 5

Input: arr[] = {7, 8, 4, 5, 7, 6, 8, 9, 7, 3}
Output: 37

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach:
The simplest approach to solve the problem is to generate all the possible permutations by reversal of elements one by one and calculate the sum at even indices for each permutation. Print the maximum possible sum among all the permutations.
Time Complexity: O(N3)
Auxiliary Space: O(N)

Efficient Approach:
The above approach can be further optimized to O(N) computational complexity by using Dynamic Programming to check the maximum difference by rotation of arrays.

Follow the steps below to solve the problem:

• Compare the elements at odd index with even index and also keep track of them.
• Initialize two arrays leftDP[] and rightDP[].
• For every odd index, leftDP[] stores the difference of the element at current index with the element on its left and rightDP[] stores that of the right.
• If the difference calculated for the previous index is positive, add it to the current difference:

if(dp[i – 1] > 0)
dp[i] = dp[i-1] + curr_diff

• Otherwise, store the current difference:

dp[i] = curr_diff;

Below is the implementation of the above approach:

## Java

 `// Java Program to implement ` `// the above approach ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// Function to return maximized sum ` `    ``// at even indices ` `    ``public` `static` `int` `maximizeSum(``int``[] arr) ` `    ``{ ` ` `  `        ``int` `n = arr.length; ` `        ``int` `sum = ``0``; ` `        ``for` `(``int` `i = ``0``; i < n; i = i + ``2``) ` `            ``sum += arr[i]; ` ` `  `        ``// Stores difference with ` `        ``// element on the left ` `        ``int` `leftDP[] = ``new` `int``[n / ``2``]; ` ` `  `        ``// Stores difference with ` `        ``// element on the right ` `        ``int` `rightDP[] = ``new` `int``[n / ``2``]; ` ` `  `        ``int` `c = ``0``; ` ` `  `        ``for` `(``int` `i = ``1``; i < n; i = i + ``2``) { ` ` `  `            ``// Compute and store ` `            ``// left difference ` `            ``int` `leftDiff = arr[i] ` `                           ``- arr[i - ``1``]; ` ` `  `            ``// For first index ` `            ``if` `(c - ``1` `< ``0``) ` `                ``leftDP = leftDiff; ` ` `  `            ``else` `{ ` ` `  `                ``// If previous difference ` `                ``// is positive ` `                ``if` `(leftDP > ``0``) ` `                    ``leftDP = leftDiff ` `                                ``+ leftDP; ` ` `  `                ``// Otherwise ` `                ``else` `                    ``leftDP[i] = leftDiff; ` `            ``} ` ` `  `            ``int` `rightDiff; ` ` `  `            ``// For the last index ` `            ``if` `(i + ``1` `>= arr.length) ` `                ``rightDiff = ``0``; ` ` `  `            ``// Otherwise ` `            ``else` `                ``rightDiff = arr[i] ` `                            ``- arr[i + ``1``]; ` ` `  `            ``// For first index ` `            ``if` `(c - ``1` `< ``0``) ` `                ``rightDP = rightDiff; ` `            ``else` `{ ` ` `  `                ``// If the previous difference ` `                ``// is positive ` `                ``if` `(rightDP > ``0``) ` `                    ``rightDP = rightDiff ` `                                 ``+ rightDP; ` `                ``else` `                    ``rightDP = rightDiff; ` `            ``} ` `            ``c++; ` `        ``} ` `        ``int` `max = ``0``; ` `        ``for` `(``int` `i = ``0``; i < n / ``2``; i++) { ` `            ``max = Math.max(max, ` `                           ``Math.max( ` `                               ``leftDP[i], ` `                               ``rightDP[i])); ` `        ``} ` ` `  `        ``return` `max + sum; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr[] = { ``7``, ``8``, ``4``, ``5``, ``7``, ``6``, ` `                      ``8``, ``9``, ``7``, ``3` `}; ` `        ``int` `ans = maximizeSum(arr); ` `        ``System.out.println(ans); ` `    ``} ` `} `

Output:

```37
```

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.