Skip to content
Related Articles

Related Articles

Improve Article

Return an array of anti-diagonals of given N*N square matrix

  • Difficulty Level : Medium
  • Last Updated : 14 Jun, 2021

Given a square matrix of size N*N, return an array of its anti-diagonals. For better understanding let us look at the image given below:

Examples: 

Input :

null

Output :
 1
 2  5
 3  6  9
 4  7  10  13
 8  11 14
 12 15
 16

Approach 1:
To solve the problem mentioned above we have two major observations. 

  • The first one is, some diagonals start from the zeroth row for each column and ends when either start column >= 0 or start row < N.
  • While the second observation is that the remaining diagonals start with end column for each row and ends when either start row < N or start column >= 0.

Below is the implementation of the above approach: 



C++




// C++ implementation to  return
// an array of its anti-diagonals
// when an N*N square matrix is given
 
#include <iostream>
using namespace std;
 
// function to print the diagonals
void diagonal(int A[3][3])
{
 
    int N = 3;
 
    // For each column start row is 0
    for (int col = 0; col < N; col++) {
 
        int startcol = col, startrow = 0;
 
        while (startcol >= 0 && startrow < N) {
            cout << A[startrow][startcol] << " ";
 
            startcol--;
 
            startrow++;
        }
        cout << "\n";
    }
 
    // For each row start column is N-1
    for (int row = 1; row < N; row++) {
        int startrow = row, startcol = N - 1;
 
        while (startrow < N && startcol >= 0) {
            cout << A[startrow][startcol] << " ";
 
            startcol--;
 
            startrow++;
        }
        cout << "\n";
    }
}
 
// Driver code
int main()
{
 
    // matrix iniliasation
    int A[3][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    diagonal(A);
 
    return 0;
}

Java




// Java implementation to  return
// an array of its anti-diagonals
// when an N*N square matrix is given
 
class Matrix {
 
    // function to print the diagonals
    void diagonal(int A[][])
    {
 
        int N = 3;
 
        // For each column start row is 0
        for (int col = 0; col < N; col++) {
 
            int startcol = col, startrow = 0;
 
            while (startcol >= 0 && startrow < N) {
 
                System.out.print(A[startrow][startcol]
                                 + " ");
 
                startcol--;
 
                startrow++;
            }
            System.out.println();
        }
 
        // For each row start column is N-1
        for (int row = 1; row < N; row++) {
            int startrow = row, startcol = N - 1;
 
            while (startrow < N && startcol >= 0) {
                System.out.print(A[startrow][startcol]
                                 + " ");
 
                startcol--;
 
                startrow++;
            }
            System.out.println();
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
 
        // matrix initialisation
        int A[][]
            = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
        Matrix m = new Matrix();
 
        m.diagonal(A);
    }
}

Python3




# Python3 implementation to return
# an array of its anti-diagonals
# when an N*N square matrix is given
 
# function to print the diagonals
 
 
def diagonal(A):
 
    N = 3
 
    # For each column start row is 0
    for col in range(N):
 
        startcol = col
        startrow = 0
 
        while(startcol >= 0 and
              startrow < N):
            print(A[startrow][startcol], end = " ")
 
            startcol -= 1
            startrow += 1
 
        print()
 
    # For each row start column is N-1
    for row in range(1, N):
        startrow = row
        startcol = N - 1
 
        while(startrow < N and
              startcol >= 0):
            print(A[startrow][startcol],
                  end=" ")
 
            startcol -= 1
            startrow += 1
 
        print()
 
 
# Driver code
if __name__ == "__main__":
 
    # matrix iniliasation
    A = [[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]]
 
    diagonal(A)
 
# This code is contributed by AnkitRai01

C#




// C# implementation to return
// an array of its anti-diagonals
// when an N*N square matrix is given
using System;
 
class GFG {
 
    // Function to print the diagonals
    static void diagonal(int[, ] A)
    {
        int N = 3;
 
        // For each column start row is 0
        for (int col = 0; col < N; col++) {
            int startcol = col, startrow = 0;
 
            while (startcol >= 0 && startrow < N) {
                Console.Write(A[startrow, startcol] + " ");
                startcol--;
                startrow++;
            }
            Console.WriteLine();
        }
 
        // For each row start column is N-1
        for (int row = 1; row < N; row++) {
            int startrow = row, startcol = N - 1;
 
            while (startrow < N && startcol >= 0) {
                Console.Write(A[startrow, startcol] + " ");
                startcol--;
                startrow++;
            }
            Console.WriteLine();
        }
    }
 
    // Driver code
    public static void Main(string[] args)
    {
 
        // Matrix initialisation
        int[, ] A
            = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
        diagonal(A);
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation to  return
// an array of its anti-diagonals
// when an N*N square matrix is given
 
// Function to print the diagonals
function diagonal(A)
{
    let N = 3;
 
    // For each column start row is 0
    for(let col = 0; col < N; col++)
    {
        let startcol = col, startrow = 0;
 
        while (startcol >= 0 && startrow < N)
        {
            document.write(A[startrow][startcol] + " ");
 
            startcol--;
            startrow++;
        }
        document.write("</br>");
    }
 
    // For each row start column is N-1
    for(let row = 1; row < N; row++)
    {
        let startrow = row, startcol = N - 1;
 
        while (startrow < N && startcol >= 0)
        {
            document.write(A[startrow][startcol] + " ");
 
            startcol--;
            startrow++;
        }
        document.write("</br>");
    }
}
 
// Driver code
 
// matrix iniliasation
let A = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ];
 
diagonal(A);
     
// This code is contributed by suresh07
 
</script>
Output: 
1 
2 4 
3 5 7 
6 8 
9

 

Time Complexity: Time complexity of the above solution is O(N*N).

Approach 2: Much simpler and concise  ( Same time Complexity)

In this approach, we will make the use of sum of indices of any element in a matrix.   Let indices of any element be represented by i (row) an j (column).

If we find the sum of indices of any element in  a N*N matrix, we will observe that the sum of indices for any element lies between 0 (when i = j = 0) and 2*N – 2 (when i = j = N-1). 

So we will follow the following steps: 

  • Declare a vector of vectors of size 2*N – 1 for holding unique sums from sum = 0 to sum = 2*N – 2.
  • Now we will loop through the vector and pushback the elements of similar sum to same row in that vector of vectors.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <iostream>
#include <vector>
using namespace std;
 
// Function to print diagonals
void diagonal(vector<vector<int> >& A)
{
 
    int n = A.size();
    int N = 2 * n - 1;
 
    vector<vector<int> > result(N);
 
    // Push each element in the result vector
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            result[i + j].push_back(A[i][j]);
   
    // Print the diagonals
    for (int i = 0; i < result.size(); i++)
    {
        cout << endl;
        for (int j = 0; j < result[i].size(); j++)
            cout << result[i][j] << " ";
    }
}
 
// Driver Code
int main()
{
 
    vector<vector<int> > A = { { 1, 2, 3, 4 },
                               { 5, 6, 7, 8 },
                               { 9, 10, 11, 12 },
                               { 13, 14, 15, 16 } };
     
    // Function Call
    diagonal(A);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
  
// Function to print diagonals
static void diagonal(int[][] A)
{
    int n = A.length;
    int N = 2 * n - 1;
  
    ArrayList<ArrayList<Integer>> result = new ArrayList<>();
     
    for(int i = 0; i < N; i++)
        result.add(new ArrayList<>());
  
    // Push each element in the result vector
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            result.get(i + j).add(A[i][j]);
    
    // Print the diagonals
    for(int i = 0; i < result.size(); i++)
    {
        System.out.println();
        for(int j = 0; j < result.get(i).size(); j++)
            System.out.print(result.get(i).get(j) + " ");
    }
}
   
// Driver code
public static void main(String[] args)
{
    int[][] A = { { 1, 2, 3, 4 },
                  { 5, 6, 7, 8 },
                  { 9, 10, 11, 12 },
                  { 13, 14, 15, 16 } };
      
    // Function Call
    diagonal(A);
}
}
 
// This code is contributed by offbeat

Python3




# Python3 program for the above approach
 
# Function to print diagonals
def diagonal(A) :
 
    n = len(A)
    N = 2 * n - 1
 
    result = []
     
    for i in range(N) :
        result.append([])
     
    # Push each element in the result vector
    for i in range(n) :
        for j in range(n) :
            result[i + j].append(A[i][j])
 
    # Print the diagonals
    for i in range(len(result)) :
     
        for j in range(len(result[i])) :
            print(result[i][j] , end = " ")
             
        print()
 
A = [ [ 1, 2, 3, 4 ],
        [ 5, 6, 7, 8 ],
        [ 9, 10, 11, 12 ],
        [ 13, 14, 15, 16 ] ]
 
# Function Call
diagonal(A)
 
# This code is contributed by divyesh072019

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to print diagonals
    static void diagonal(List<List<int>> A)
    {
      
        int n = A.Count;
        int N = 2 * n - 1;
      
        List<List<int>> result = new List<List<int>>();
         
        for (int i = 0; i < N; i++)
        {
            result.Add(new List<int>());
        }
      
        // Push each element in the result vector
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                result[i + j].Add(A[i][j]);
        
        // Print the diagonals
        for (int i = 0; i < result.Count; i++)
        {
            for (int j = 0; j < result[i].Count; j++)
                Console.Write(result[i][j] + " ");
            Console.WriteLine();
        }
    }
     
  static void Main() {
    List<List<int>> A = new List<List<int>>();
    A.Add(new List<int> {1, 2, 3, 4});
    A.Add(new List<int> {5, 6, 7, 8});
    A.Add(new List<int> {9, 10, 11, 12});
    A.Add(new List<int> {13, 14, 15, 16});
       
    // Function Call
    diagonal(A);
  }
}

Javascript




<script>
    // Javascript program for the above approach
     
    // Function to print diagonals
    function diagonal(A)
    {
       
        let n = A.length;
        let N = 2 * n - 1;
       
        let result = [];
        for (let i = 0; i < N; i++)
        {
            result.push([]);
        }
       
        // Push each element in the result vector
        for (let i = 0; i < n; i++)
            for (let j = 0; j < n; j++)
                result[i + j].push(A[i][j]);
         
        // Print the diagonals
        for (let i = 0; i < result.length; i++)
        {
            for (let j = 0; j < result[i].length; j++)
                document.write(result[i][j] + " ");
            document.write("</br>");
        }
    }
     
    let A = [[1, 2, 3, 4],
              [5, 6, 7, 8],
              [9, 10, 11, 12],
              [13, 14, 15, 16]];
               
      // Function Call
    diagonal(A);
 
// This code is contributed by mukesh07.
</script>

Output : 

1  
2 5  
3 6 9  
4 7 10 13  
8 11 14  
12 15  
16

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :