Given two integers **N** and **K**, the task is to find whether it is possible to represent **N** as the sum of exactly **K** powers of **2**. If possible, then print **K** positive integers such that they are powers of **2** and their sum is exactly equal to **N**. Otherwise, print “**Impossible”**. If multiple answers exist, print any.

**Examples:**

Input:N = 5, K = 2Output:4 1Explanation:The only way of representing N as K numbers that are powers of 2 is {4, 1}.

Input:N = 7, K = 4Output:4 1 1 1Explanation:The possible ways of representing N as K numbers that are powers of 2 are {4, 1, 1, 1} and {2, 2, 2, 1}.

**Priority Queue**** based Approach:** Refer tothis article to solve the problem using Priority Queue.

**Recursive**** Approach:** Refer to thisarticle to solve the problem using Recursion.

**Alternate Approach: **The idea is to use the Greedy Approach to solve this problem. Below are the steps:

- Initialize an integer, say
**num = 31**, and a vector of integers, say**res**, to store the**K**numbers which are powers of 2. - Check if the number of bits in N is greater than
**K**or if**N**is less than**K,**then print**“Impossible”.** - Iterate while
**num ≥ 0 and K > 0:**- Check if
**N – 2**is less than^{num }**K – 1**. If found to be true, then decrement**num**by one and continue. - Otherwise, decrement
**K**by one, and**N**by**2**and push^{num}**num**into the vector**res**.

- Check if
- Finally, print the vector
**res**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find K numbers with` `// sum N that are powers of 2` `void` `nAsKPowersOfTwo(` `int` `N, ` `int` `K)` `{` ` ` `// Count the number of set bits` ` ` `int` `x = __builtin_popcount(N);` ` ` `// Not-possible condition` ` ` `if` `(K < x || K > N) {` ` ` `cout << ` `"Impossible"` `;` ` ` `return` `;` ` ` `}` ` ` `int` `num = 31;` ` ` `// To store K numbers` ` ` `// which are powers of 2` ` ` `vector<` `int` `> res;` ` ` `// Traverse while num >= 0` ` ` `while` `(num >= 0 && K) {` ` ` `// Calculate current bit value` ` ` `int` `val = ` `pow` `(2, num);` ` ` `// Check if remaining N` ` ` `// can be reprsented as` ` ` `// K-1 numbers that are` ` ` `// power of 2` ` ` `if` `(N - val < K - 1) {` ` ` `// Decrement num by one` ` ` `--num;` ` ` `continue` `;` ` ` `}` ` ` `// Decrement K by one` ` ` `--K;` ` ` `// Decrement N by val` ` ` `N -= val;` ` ` `// Push the num in the` ` ` `// vector res` ` ` `res.push_back(num);` ` ` `}` ` ` `// Print the vector res` ` ` `for` `(` `auto` `x : res)` ` ` `cout << ` `pow` `(2, x) << ` `" "` `;` `}` `// Driver Code` `int` `main()` `{` ` ` `// Given N & K` ` ` `int` `N = 7, K = 4;` ` ` `// Function Call` ` ` `nAsKPowersOfTwo(N, K);` `}` |

## Java

`// Java program for the above approach` `import` `java.util.*;` `class` `GFG{` `// Function to find K numbers with` `// sum N that are powers of 2` `static` `void` `nAsKPowersOfTwo(` `int` `N, ` `int` `K)` `{` ` ` ` ` `// Count the number of set bits` ` ` `int` `x = Integer.bitCount(N);` ` ` `// Not-possible condition` ` ` `if` `(K < x || K > N)` ` ` `{` ` ` `System.out.print(` `"Impossible"` `);` ` ` `return` `;` ` ` `}` ` ` `int` `num = ` `31` `;` ` ` `// To store K numbers` ` ` `// which are powers of 2` ` ` `Vector<Integer> res = ` `new` `Vector<Integer>();` ` ` `// Traverse while num >= 0` ` ` `while` `(num >= ` `0` `&& K > ` `0` `)` ` ` `{` ` ` `// Calculate current bit value` ` ` `int` `val = (` `int` `) Math.pow(` `2` `, num);` ` ` `// Check if remaining N` ` ` `// can be reprsented as` ` ` `// K-1 numbers that are` ` ` `// power of 2` ` ` `if` `(N - val < K - ` `1` `)` ` ` `{` ` ` `// Decrement num by one` ` ` `--num;` ` ` `continue` `;` ` ` `}` ` ` `// Decrement K by one` ` ` `--K;` ` ` `// Decrement N by val` ` ` `N -= val;` ` ` `// Push the num in the` ` ` `// vector res` ` ` `res.add(num);` ` ` `}` ` ` `// Print the vector res` ` ` `for` `(` `int` `i : res)` ` ` `System.out.print((` `int` `)Math.pow(` `2` `, i)+ ` `" "` `);` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `// Given N & K` ` ` `int` `N = ` `7` `, K = ` `4` `;` ` ` `// Function Call` ` ` `nAsKPowersOfTwo(N, K);` `}` `}` `// This code is contributed by 29AjayKumar` |

## Python3

`# Python3 program for the above approach` `# Function to find K numbers with` `# sum N that are powers of 2` `def` `nAsKPowersOfTwo(N, K):` ` ` ` ` `# Count the number of set bits` ` ` `x ` `=` `bin` `(N).count(` `'1'` `)` ` ` `# Not-possible condition` ` ` `if` `(K < x ` `or` `K > N):` ` ` `cout << ` `"Impossible"` ` ` `return` ` ` `num ` `=` `31` ` ` `# To store K numbers` ` ` `# which are powers of 2` ` ` `res ` `=` `[]` ` ` `# Traverse while num >= 0` ` ` `while` `(num >` `=` `0` `and` `K):` ` ` `# Calculate current bit value` ` ` `val ` `=` `pow` `(` `2` `, num)` ` ` `# Check if remaining N` ` ` `# can be reprsented as` ` ` `# K-1 numbers that are` ` ` `# power of 2` ` ` `if` `(N ` `-` `val < K ` `-` `1` `):` ` ` `# Decrement num by one` ` ` `num ` `-` `=` `1` ` ` `continue` ` ` `# Decrement K by one` ` ` `K ` `-` `=` `1` ` ` `# Decrement N by val` ` ` `N ` `-` `=` `val` ` ` `# Push the num in the` ` ` `# vector res` ` ` `res.append(num)` ` ` `# Prthe vector res` ` ` `for` `x ` `in` `res:` ` ` `print` `(` `pow` `(` `2` `, x), end ` `=` `" "` `)` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `# Given N & K` ` ` `N, K ` `=` `7` `, ` `4` ` ` `# Function Call` ` ` `nAsKPowersOfTwo(N, K)` `# This code is contributed mohit kumar 29.` |

## C#

`// C# program for the above approach` `using` `System;` `using` `System.Collections.Generic;` `class` `GFG{` `// Function to find K numbers with` `// sum N that are powers of 2` `static` `void` `nAsKPowersOfTwo(` `int` `N, ` `int` `K)` `{` ` ` ` ` `// Count the number of set bits` ` ` `int` `x = countSetBits(N);` ` ` `// Not-possible condition` ` ` `if` `(K < x || K > N)` ` ` `{` ` ` `Console.Write(` `"Impossible"` `);` ` ` `return` `;` ` ` `}` ` ` `int` `num = 31;` ` ` `// To store K numbers` ` ` `// which are powers of 2` ` ` `List<` `int` `> res = ` `new` `List<` `int` `>();` ` ` `// Traverse while num >= 0` ` ` `while` `(num >= 0 && K > 0)` ` ` `{` ` ` `// Calculate current bit value` ` ` `int` `val = (` `int` `) Math.Pow(2, num);` ` ` `// Check if remaining N` ` ` `// can be reprsented as` ` ` `// K-1 numbers that are` ` ` `// power of 2` ` ` `if` `(N - val < K - 1)` ` ` `{` ` ` `// Decrement num by one` ` ` `--num;` ` ` `continue` `;` ` ` `}` ` ` `// Decrement K by one` ` ` `--K;` ` ` `// Decrement N by val` ` ` `N -= val;` ` ` `// Push the num in the` ` ` `// vector res` ` ` `res.Add(num);` ` ` `}` ` ` `// Print the vector res` ` ` `foreach` `(` `int` `i ` `in` `res)` ` ` `Console.Write((` `int` `)Math.Pow(2, i)+ ` `" "` `);` `}` `static` `int` `countSetBits(` `long` `x)` `{` ` ` `int` `setBits = 0;` ` ` `while` `(x != 0)` ` ` `{` ` ` `x = x & (x - 1);` ` ` `setBits++;` ` ` `}` ` ` `return` `setBits;` `}` ` ` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `// Given N & K` ` ` `int` `N = 7, K = 4;` ` ` `// Function Call` ` ` `nAsKPowersOfTwo(N, K);` `}` `}` `// This code is contributed by shikhasingrajput` |

**Output:**

4 1 1 1

**Time Complexity:** O(32)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.