Related Articles

Related Articles

Replacing missing values using Pandas in Python
  • Last Updated : 16 Nov, 2020

Dataset is a collection of attributes and rows. Data set can have missing data that are represented by NA in Python and in this article, we are going to replace missing values in this article

We consider this data set: Dataset

data set

In our data contains missing values in quantity, price, bought, forenoon and afternoon columns,

So, We can replace missing values in the quantity column with mean, price column with a median, Bought column with standard deviation. Forenoon column with the minimum value in that column. Afternoon column with maximum value in that column.

Approach:



  • Import the module
  • Load data set
  • Fill in the missing values
  • Verify data set

Syntax:

Mean: data=data.fillna(data.mean())

Median: data=data.fillna(data.median())

Standard Deviation: data=data.fillna(data.std())

Min: data=data.fillna(data.min())

Max: data=data.fillna(data.max())

Below is the Implementation:

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas module
import pandas as pd
  
# loading data set
data = pd.read_csv('item.csv')
  
# display the data
print(data)

chevron_right


Output:

Then after we will proceed with Replacing missing values with mean, median, mode, standard deviation, min & max

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# replacing missing values in quantity
# column with mean of that column
data['quantity'] = data['quantity'].fillna(data['quantity'].mean())
  
# replacing missing values in price column
# with median of that column
data['price'] = data['price'].fillna(data['price'].median())
  
# replacing missing values in bought column with
# standard deviation of that column
data['bought'] = data['bought'].fillna(data['bought'].std())
  
# replacing missing values in forenoon  column with
# minimum number of that column
data['forenoon'] = data['forenoon'].fillna(data['forenoon'].min())
  
# replacing missing values in afternoon  column with 
# maximum number of that column
data['afternoon'] = data['afternoon'].fillna(data['afternoon'].max())
  
print(Data)

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :