Open In App

Replace the values of the nodes with the nearest Prime number

Last Updated : 25 Apr, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given the head of a linked list, the task is to replace all the values of the nodes with the nearest prime number. If more than one prime number exists at an equal distance, choose the smallest one.

Examples:

Input: 2 → 6 → 10
Output: 2 → 5 → 11
Explanation: The nearest prime of 2 is 2 itself. The nearest primes of 6 are 5 and 7, since 5 is smaller so, 5 will be chosen. The nearest prime of 10 is 11.

Input: 1 → 15 → 20
Output: 2 → 13 → 19
Explanation: The nearest prime of 1 is 2. The nearest primes of 15 are 13 and 17, since 13 is smaller so, 13 will be chosen. The nearest prime of 20 is 19.

Approach: To solve the problem follow the below idea:

Idea is to traverse the Linked List and check if the current number is a prime number, then the number itself is the nearest prime number for it, so no need to replace its value, if the current number is not a prime number, visit both sides of the current number and replace the value with nearest prime number.

Below are the steps for the above approach:

  • Initialize a node say, temp = head, to traverse the Linked List.
  • Run a loop till temp != NULL,
  • Traverse the linked list.
  • Initialize three variables num, num1, and num2 with the current node value.
  • If the current node value is 1, replace it with 2.
  • If the current node is not prime, we have to visit both sides of the number to find the nearest prime number
    • and decrease the number by 1 till we get a prime number.
      • while (!isPrime(num1)), num1–.
    • increase the number by 1 till we get a prime number.
      • while (!isPrime(num2)), num2++.
  • Now update the node value with the nearest prime number.

Below is the implementation for the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
class Node {
public:
    int val;
    Node* next;
    Node(int num)
    {
        val = num;
        next = NULL;
    }
};
 
bool isPrime(int n)
{
    if (n == 1)
        return false;
    if (n == 2 || n == 3)
        return true;
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}
Node* primeList(Node* head)
{
    Node* temp = head;
    while (temp != NULL) {
        int num = temp->val, num1, num2;
        num1 = num2 = num;
        if (num == 1) {
            temp->val = 2;
            temp = temp->next;
            continue;
        }
        while (!isPrime(num1)) {
            num1--;
        }
        while (!isPrime(num2)) {
            num2++;
        }
        if (num - num1 > num2 - num) {
            temp->val = num2;
        }
        else {
            temp->val = num1;
        }
        temp = temp->next;
    }
    return head;
}
 
// Driver code
int main()
{
 
    Node* head = new Node(2);
    head->next = new Node(6);
    head->next->next = new Node(10);
    Node* ans = primeList(head);
    while (ans != NULL) {
        cout << ans->val << " ";
        ans = ans->next;
    }
    return 0;
}


Java




// Java code for the above approach:
import java.util.*;
 
class Node {
    public int val;
    public Node next;
    public Node(int num)
    {
        val = num;
        next = null;
    }
}
 
class GFG {
    public static boolean isPrime(int n)
    {
        if (n == 1)
            return false;
        if (n == 2 || n == 3)
            return true;
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    public static Node primeList(Node head)
    {
        Node temp = head;
        while (temp != null) {
            int num = temp.val, num1, num2;
            num1 = num2 = num;
            if (num == 1) {
                temp.val = 2;
                temp = temp.next;
                continue;
            }
            while (!isPrime(num1)) {
                num1--;
            }
            while (!isPrime(num2)) {
                num2++;
            }
            if (num - num1 > num2 - num) {
                temp.val = num2;
            }
            else {
                temp.val = num1;
            }
            temp = temp.next;
        }
        return head;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        Node head = new Node(2);
        head.next = new Node(6);
        head.next.next = new Node(10);
        Node ans = primeList(head);
        while (ans != null) {
            System.out.print(ans.val + " ");
            ans = ans.next;
        }
    }
}
 
// This code is contributed by prasad264


Python3




# Python3 code for the above approach:
 
# Import math module to use sqrt function
import math
 
# Define a Node class with val and next attributes
class Node:
    def __init__(self, num):
        self.val = num
        self.next = None
 
# Define a function to check if a number is prime       
def is_prime(n):
    # 1 is not a prime number
    if n == 1:
        return False
       
    # 2 and 3 are prime numbers
    if n == 2 or n == 3:
        return True
       
    # Check if the number has any factor between 2 and sqrt(n)
    for i in range(2, int(math.sqrt(n))+1):
      if n % i == 0:
          return False
 
    return True
 
# Define a function to update the values of the nodes based on prime numbers
def prime_list(head):
    # Set temp variable to head node
    temp = head
     
    # Loop through the linked list
    while temp != None:
          # Get the value of the current node
        num = temp.val
         
        # Initialize num1 and num2 to num
        num1, num2 = num, num
         
        # If the node value is 1, update it to 2 and move to next node
        if num == 1:
            temp.val = 2
            temp = temp.next
            continue
         
        # Find the nearest prime numbers on either side of num
        while not is_prime(num1):
            num1 -= 1
        while not is_prime(num2):
            num2 += 1
             
        # Update the node value based on which nearest prime is closer to num
        if num - num1 > num2 - num:
            temp.val = num2
        else:
            temp.val = num1
         
        # Move to next node
        temp = temp.next
    return head
 
# Driver code
if __name__ == '__main__':
    # Create a linked list with given node values
    head = Node(2)
    head.next = Node(6)
    head.next.next = Node(10)
     
    # Call the function to update the values of nodes
    ans = prime_list(head)
     
    # Print the updated values of nodes in the linked list
    while ans != None:
        print(ans.val, end=' ')
        ans = ans.next


C#




using System;
 
public class Node {
    public int val;
    public Node next;
    public Node(int num)
    {
        val = num;
        next = null;
    }
}
 
public class Program {
    public static bool IsPrime(int n)
    {
        if (n == 1)
            return false;
        if (n == 2 || n == 3)
            return true;
        for (int i = 2; i <= Math.Sqrt(n); i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    public static Node PrimeList(Node head)
    {
        Node temp = head;
        while (temp != null) {
            int num = temp.val, num1, num2;
            num1 = num2 = num;
            if (num == 1) {
                temp.val = 2;
                temp = temp.next;
                continue;
            }
            while (!IsPrime(num1)) {
                num1--;
            }
            while (!IsPrime(num2)) {
                num2++;
            }
            if (num - num1 > num2 - num) {
                temp.val = num2;
            }
            else {
                temp.val = num1;
            }
            temp = temp.next;
        }
        return head;
    }
 
    public static void Main()
    {
        Node head = new Node(2);
        head.next = new Node(6);
        head.next.next = new Node(10);
        Node ans = PrimeList(head);
        while (ans != null) {
            Console.Write(ans.val + " ");
            ans = ans.next;
        }
    }
}


Javascript




// JavaScript code for the above approach:
 
// Node class with val and next attributes
class Node {
    constructor(num)
    {
        this.val = num;
        this.next = null;
    }
}
 
// function to check if a number is prime
function isPrime(n)
{
      // 1 is not a prime number
    if (n == 1)
        return false;
      // 2 and 3 are prime numbers
    if (n == 2 || n == 3)
        return true;
       
      // Check if the number has any factor between 2 and sqrt(n)
    for (let i = 2; i <= Math.sqrt(n); i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}
 
// function to update the values of the nodes based on prime numbers
function primeList(head)
{
      // Set temp variable to head node
    let temp = head;
   
      // Loop through the linked list
    while (temp != null) {
        let num = temp.val, num1, num2;
        num1 = num2 = num;
       
          // If the node value is 1, update it to 2 and move to next node
        if (num == 1) {
            temp.val = 2;
            temp = temp.next;
            continue;
        }
       
          // Find the nearest prime numbers on either side of num
        while (!isPrime(num1)) {
            num1--;
        }
        while (!isPrime(num2)) {
            num2++;
        }
       
          // Update the node value based on which nearest prime is closer to num
        if (num - num1 > num2 - num) {
            temp.val = num2;
        }
        else {
            temp.val = num1;
        }
       
          // move to next node
        temp = temp.next;
    }
   
    return head;
}
 
// Driver code
let head = new Node(2);
head.next = new Node(6);
head.next.next = new Node(10);
 
// Function call
let ans = primeList(head);
 
let res = ""
while (ans != null) {
    res += ans.val;
    res += " ";
    ans = ans.next;
}
 
console.log(res);


Output

2 5 11 

Time Complexity: O(sqrt(value of node)), As for each no we are checking the number and its nearest numbers if it is prime.
Auxiliary Space: As we are not using any extra space, the space complexity is O(1).

Approach : 

  • Define a Node class with val and next attributes.
  • Define a function is_prime() to check if a number is prime.
  • Define a function prime_list() to update the values of the nodes based on prime numbers:
    • a. Loop through the linked list and get the value of the current node.
    • b. Initialize num1 and num2 to num.
    • c. If the node value is 1, update it to 2 and move to the next node.
    • d. Find the nearest prime numbers on either side of num using is_prime() function.
    • e. Update the node value based on which nearest prime is closer to num.
    • f. Move to the next node.
    • g. Return the head node of the updated linked list.
  • Create a linked list with given node values.
  • Call the function prime_list() to update the values of nodes.
  • Print the updated values of nodes in the linked list.

C++




#include <iostream>
#include <cmath>
using namespace std;
 
class Node {
public:
    int val;
    Node* next;
 
    Node(int num) {
        val = num;
        next = NULL;
    }
};
 
bool is_prime(int n, int* primes, int len) {
    if (n == 1) {
        return false;
    }
       
    for (int i = 0; i < len; i++) {
        int p = primes[i];
        if (p * p > n) {
            break;
        }
        if (n % p == 0) {
            return false;
        }
    }
    return true;
}
 
Node* prime_list(Node* head) {
    int max_num = 0;
    Node* temp = head;
    while (temp != NULL) {
        max_num = max(max_num, temp->val);
        temp = temp->next;
    }
 
    int primes[max_num+1];
    primes[0] = 2;
    int len = 1;
    for (int i = 3; i <= sqrt(max_num); i += 2) {
        if (is_prime(i, primes, len)) {
            primes[len] = i;
            len++;
        }
    }
     
    temp = head;
    while (temp != NULL) {
        int num = temp->val;
         
        if (num == 1) {
            temp->val = 2;
        } else {
            int num1 = num, num2 = num;
            while (!is_prime(num1, primes, len)) {
                num1--;
            }
            while (!is_prime(num2, primes, len)) {
                num2++;
            }
             
            if (num - num1 > num2 - num) {
                temp->val = num2;
            } else {
                temp->val = num1;
            }
        }
         
        temp = temp->next;
    }
     
    return head;
}
 
int main() {
    Node* head = new Node(2);
    head->next = new Node(6);
    head->next->next = new Node(10);
    Node* ans = prime_list(head);
    while (ans != NULL) {
        cout << ans->val << " ";
        ans = ans->next;
    }
    return 0;
}
 
//This code is contributed by Akash Jha


Java




import java.util.*;
 
class Node {
    int val;
    Node next;
 
    Node(int num) {
        val = num;
        next = null;
    }
}
 
public class Main {
    public static boolean is_prime(int n, int[] primes, int len) {
        if (n == 1) {
            return false;
        }
         
        for (int i = 0; i < len; i++) {
            int p = primes[i];
            if (p * p > n) {
                break;
            }
            if (n % p == 0) {
                return false;
            }
        }
        return true;
    }
 
    public static Node prime_list(Node head) {
        int max_num = 0;
        Node temp = head;
        while (temp != null) {
            max_num = Math.max(max_num, temp.val);
            temp = temp.next;
        }
 
        int[] primes = new int[max_num+1];
        primes[0] = 2;
        int len = 1;
        for (int i = 3; i <= Math.sqrt(max_num); i += 2) {
            if (is_prime(i, primes, len)) {
                primes[len] = i;
                len++;
            }
        }
         
        temp = head;
        while (temp != null) {
            int num = temp.val;
             
            if (num == 1) {
                temp.val = 2;
            } else {
                int num1 = num, num2 = num;
                while (!is_prime(num1, primes, len)) {
                    num1--;
                }
                while (!is_prime(num2, primes, len)) {
                    num2++;
                }
                 
                if (num - num1 > num2 - num) {
                    temp.val = num2;
                } else {
                    temp.val = num1;
                }
            }
             
            temp = temp.next;
        }
         
        return head;
    }
 
    public static void main(String[] args) {
        Node head = new Node(2);
        head.next = new Node(6);
        head.next.next = new Node(10);
        Node ans = prime_list(head);
        while (ans != null) {
            System.out.print(ans.val + " ");
            ans = ans.next;
        }
    }
}
 
//This code is contributed by Akash Jha


Python3




import math
 
class Node:
    def __init__(self, num):
        self.val = num
        self.next = None
 
def is_prime(n, primes):
    if n == 1:
        return False
       
    for p in primes:
        if p*p > n:
            break
        if n % p == 0:
            return False
       
    return True
 
def prime_list(head):
    max_num = 0
    temp = head
    while temp != None:
        max_num = max(max_num, temp.val)
        temp = temp.next
         
    primes = [2]
    for i in range(3, int(math.sqrt(max_num))+1, 2):
        if is_prime(i, primes):
            primes.append(i)
     
    temp = head
    while temp != None:
        num = temp.val
         
        if num == 1:
            temp.val = 2
        else:
            num1, num2 = num, num
            while not is_prime(num1, primes):
                num1 -= 1
            while not is_prime(num2, primes):
                num2 += 1
             
            if num - num1 > num2 - num:
                temp.val = num2
            else:
                temp.val = num1
         
        temp = temp.next
     
    return head
 
if __name__ == '__main__':
    head = Node(2)
    head.next = Node(6)
    head.next.next = Node(10)
    ans = prime_list(head)
    while ans != None:
        print(ans.val, end=' ')
        ans = ans.next


C#




using System;
 
class Node {
    public int val;
    public Node next;
 
    public Node(int num) {
        val = num;
        next = null;
    }
}
 
class Program {
    static bool is_prime(int n, int[] primes, int len) {
        if (n == 1) {
            return false;
        }
 
        for (int i = 0; i < len; i++) {
            int p = primes[i];
            if (p * p > n) {
                break;
            }
            if (n % p == 0) {
                return false;
            }
        }
        return true;
    }
 
    static Node prime_list(Node head) {
        int max_num = 0;
        Node temp = head;
        while (temp != null) {
            max_num = Math.Max(max_num, temp.val);
            temp = temp.next;
        }
 
        int[] primes = new int[max_num+1];
        primes[0] = 2;
        int len = 1;
        for (int i = 3; i <= Math.Sqrt(max_num); i += 2) {
            if (is_prime(i, primes, len)) {
                primes[len] = i;
                len++;
            }
        }
 
        temp = head;
        while (temp != null) {
            int num = temp.val;
 
            if (num == 1) {
                temp.val = 2;
            } else {
                int num1 = num, num2 = num;
                while (!is_prime(num1, primes, len)) {
                    num1--;
                }
                while (!is_prime(num2, primes, len)) {
                    num2++;
                }
 
                if (num - num1 > num2 - num) {
                    temp.val = num2;
                } else {
                    temp.val = num1;
                }
            }
 
            temp = temp.next;
        }
 
        return head;
    }
 
    static void Main(string[] args) {
        Node head = new Node(2);
        head.next = new Node(6);
        head.next.next = new Node(10);
        Node ans = prime_list(head);
        while (ans != null) {
            Console.Write(ans.val + " ");
            ans = ans.next;
        }
    }
}
 
//This code is contributed by Akash Jha


Javascript




class Node {
    constructor(num) {
        this.val = num;
        this.next = null;
    }
}
 
function is_prime(n, primes, len) {
    if (n == 1) {
        return false;
    }
       
    for (let i = 0; i < len; i++) {
        let p = primes[i];
        if (p * p > n) {
            break;
        }
        if (n % p == 0) {
            return false;
        }
    }
    return true;
}
 
function prime_list(head) {
    let max_num = 0;
    let temp = head;
    while (temp != null) {
        max_num = Math.max(max_num, temp.val);
        temp = temp.next;
    }
 
    let primes = new Array(max_num+1);
    primes[0] = 2;
    let len = 1;
    for (let i = 3; i <= Math.sqrt(max_num); i += 2) {
        if (is_prime(i, primes, len)) {
            primes[len] = i;
            len++;
        }
    }
     
    temp = head;
    while (temp != null) {
        let num = temp.val;
         
        if (num == 1) {
            temp.val = 2;
        } else {
            let num1 = num, num2 = num;
            while (!is_prime(num1, primes, len)) {
                num1--;
            }
            while (!is_prime(num2, primes, len)) {
                num2++;
            }
             
            if (num - num1 > num2 - num) {
                temp.val = num2;
            } else {
                temp.val = num1;
            }
        }
         
        temp = temp.next;
    }
     
    return head;
}
 
let head = new Node(2);
head.next = new Node(6);
head.next.next = new Node(10);
let ans = prime_list(head);
while (ans != null) {
    console.log(ans.val + " ");
    ans = ans.next;
}
 
//This code is contributed by Akash Jha


Output

2 5 11 

Time Complexity: In this implementation, we precompute all prime numbers up to the square root of the maximum value in the linked list using a sieve algorithm. Then, for each node in the linked list, we check whether its value is prime or not using the precomputed list of primes. This reduces the time complexity of the algorithm to O(n*log(log(n))), where n is the maximum value in the linked list.
Auxiliary Space: As we are not using any extra space, the space complexity is O(1).



Like Article
Suggest improvement
Share your thoughts in the comments

Similar Reads