# Replace each node in binary tree with the sum of its inorder predecessor and successor

Given a binary tree containing n nodes. The problem is to replace each node in the binary tree with the sum of its inorder predecessor and inorder successor.

Examples:

```Input :          1
/   \
2     3
/  \  /  \
4   5  6   7

Output :        11
/    \
9      13
/ \    /  \
2   3   4   3

For 1:
Inorder predecessor = 5
Inorder successor  = 6
Sum = 11

For 4:
Inorder predecessor = 0
(as inorder predecessor is not present)
Inorder successor  = 2
Sum = 2

For 7:
Inorder predecessor = 3
Inorder successor  = 0
(as inorder successor is not present)
Sum = 3
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Create an array arr. Store 0 at index 0. Now, store the inorder traversal of tree in the array arr. Then, store 0 at last index. 0’s are stored as inorder predecessor of leftmost leaf and inorder successor of rightmost leaf is not present. Now, perform inorder traversal and while traversing node replace node’s value with arr[i-1] + arr[i+1] and then increment i. In the beginning initialize i = 1. For an element arr[i], the values arr[i-1] and arr[i+1] are its inorder predecessor and inorder successor respectively.

## C++

 `// C++ implementation to replace each node  ` `// in binary tree with the sum of its inorder  ` `// predecessor and successor ` `#include ` ` `  `using` `namespace` `std; ` ` `  `// node of a binary tree ` `struct` `Node { ` `    ``int` `data; ` `    ``struct` `Node* left, *right; ` `}; ` ` `  `// function to get a new node of a binary tree ` `struct` `Node* getNode(``int` `data) ` `{ ` `    ``// allocate node ` `    ``struct` `Node* new_node =  ` `       ``(``struct` `Node*)``malloc``(``sizeof``(``struct` `Node)); ` ` `  `    ``// put in the data; ` `    ``new_node->data = data; ` `    ``new_node->left = new_node->right = NULL; ` ` `  `    ``return` `new_node; ` `} ` ` `  `// function to store the inorder traversal ` `// of the binary tree in 'arr' ` `void` `storeInorderTraversal(``struct` `Node* root,  ` `                                ``vector<``int``>& arr) ` `{ ` `    ``// if root is NULL ` `    ``if` `(!root) ` `        ``return``; ` ` `  `    ``// first recur on left child ` `    ``storeInorderTraversal(root->left, arr); ` ` `  `    ``// then store the root's data in 'arr' ` `    ``arr.push_back(root->data); ` ` `  `    ``// now recur on right child ` `    ``storeInorderTraversal(root->right, arr); ` `} ` ` `  `// function to replace each node with the sum of its ` `// inorder predecessor and successor ` `void` `replaceNodeWithSum(``struct` `Node* root, ` `                        ``vector<``int``> arr, ``int``* i) ` `{ ` `    ``// if root is NULL ` `    ``if` `(!root) ` `        ``return``; ` ` `  `    ``// first recur on left child ` `    ``replaceNodeWithSum(root->left, arr, i); ` ` `  `    ``// replace node's data with the sum of its ` `    ``// inorder predecessor and successor ` `    ``root->data = arr[*i - 1] + arr[*i + 1]; ` ` `  `    ``// move 'i' to point to the next 'arr' element ` `    ``++*i; ` ` `  `    ``// now recur on right child ` `    ``replaceNodeWithSum(root->right, arr, i); ` `} ` ` `  `// Utility function to replace each node in binary ` `// tree with the sum of its inorder predecessor  ` `// and successor ` `void` `replaceNodeWithSumUtil(``struct` `Node* root) ` `{ ` `    ``// if tree is empty ` `    ``if` `(!root) ` `        ``return``; ` ` `  `    ``vector<``int``> arr; ` ` `  `    ``// store the value of inorder predecessor ` `    ``// for the leftmost leaf ` `    ``arr.push_back(0); ` ` `  `    ``// store the inoder traversal of the tree in 'arr' ` `    ``storeInorderTraversal(root, arr); ` ` `  `    ``// store the value of inorder successor ` `    ``// for the rightmost leaf ` `    ``arr.push_back(0);   ` ` `  `    ``// replace each node with the required sum ` `    ``int` `i = 1; ` `    ``replaceNodeWithSum(root, arr, &i); ` `} ` ` `  `// function to print the preorder traversal ` `// of a binary tree ` `void` `preorderTraversal(``struct` `Node* root) ` `{ ` `    ``// if root is NULL ` `    ``if` `(!root) ` `        ``return``; ` ` `  `    ``// first print the data of node ` `    ``cout << root->data << ``" "``; ` ` `  `    ``// then recur on left subtree ` `    ``preorderTraversal(root->left); ` ` `  `    ``// now recur on right subtree ` `    ``preorderTraversal(root->right); ` `} ` ` `  `// Driver program to test above ` `int` `main() ` `{ ` `    ``// binary tree formation ` `    ``struct` `Node* root = getNode(1); ``/*         1        */` `    ``root->left = getNode(2);        ``/*       /   \      */` `    ``root->right = getNode(3);       ``/*     2      3     */` `    ``root->left->left = getNode(4);  ``/*    /  \  /   \   */` `    ``root->left->right = getNode(5); ``/*   4   5  6   7   */` `    ``root->right->left = getNode(6); ` `    ``root->right->right = getNode(7); ` ` `  `    ``cout << ``"Preorder Traversal before tree modification:n"``; ` `    ``preorderTraversal(root); ` ` `  `    ``replaceNodeWithSumUtil(root); ` ` `  `    ``cout << ``"\nPreorder Traversal after tree modification:n"``; ` `    ``preorderTraversal(root); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation to replace each node  ` `// in binary tree with the sum of its inorder  ` `// predecessor and successor ` `import` `java.util.*; ` `class` `Solution ` `{ ` `     `  `// node of a binary tree ` `static` `class` `Node { ` `    ``int` `data; ` `     ``Node left, right; ` `} ` ` `  `//INT class ` `static` `class` `INT ` `{ ` `    ``int` `data; ` `} ` `  `  `// function to get a new node of a binary tree ` `static`  `Node getNode(``int` `data) ` `{ ` `    ``// allocate node ` `     ``Node new_node =``new` `Node(); ` `  `  `    ``// put in the data; ` `    ``new_node.data = data; ` `    ``new_node.left = new_node.right = ``null``; ` `  `  `    ``return` `new_node; ` `} ` `  `  `// function to store the inorder traversal ` `// of the binary tree in 'arr' ` `static` `void` `storeInorderTraversal( Node root,  ` `                                ``Vector arr) ` `{ ` `    ``// if root is null ` `    ``if` `(root==``null``) ` `        ``return``; ` `  `  `    ``// first recur on left child ` `    ``storeInorderTraversal(root.left, arr); ` `  `  `    ``// then store the root's data in 'arr' ` `    ``arr.add(root.data); ` `  `  `    ``// now recur on right child ` `    ``storeInorderTraversal(root.right, arr); ` `} ` `  `  `// function to replace each node with the sum of its ` `// inorder predecessor and successor ` `static` `void` `replaceNodeWithSum( Node root, ` `                        ``Vector arr, INT i) ` `{ ` `    ``// if root is null ` `    ``if` `(root==``null``) ` `        ``return``; ` `  `  `    ``// first recur on left child ` `    ``replaceNodeWithSum(root.left, arr, i); ` `  `  `    ``// replace node's data with the sum of its ` `    ``// inorder predecessor and successor ` `    ``root.data = arr.get(i.data - ``1``) + arr.get(i.data + ``1``); ` `  `  `    ``// move 'i' to point to the next 'arr' element ` `    ``i.data++; ` `  `  `    ``// now recur on right child ` `    ``replaceNodeWithSum(root.right, arr, i); ` `} ` `  `  `// Utility function to replace each node in binary ` `// tree with the sum of its inorder predecessor  ` `// and successor ` `static` `void` `replaceNodeWithSumUtil( Node root) ` `{ ` `    ``// if tree is empty ` `    ``if` `(root==``null``) ` `        ``return``; ` `  `  `    ``Vector arr= ``new` `Vector(); ` `  `  `    ``// store the value of inorder predecessor ` `    ``// for the leftmost leaf ` `    ``arr.add(``0``); ` `  `  `    ``// store the inoder traversal of the tree in 'arr' ` `    ``storeInorderTraversal(root, arr); ` `  `  `    ``// store the value of inorder successor ` `    ``// for the rightmost leaf ` `    ``arr.add(``0``);   ` `  `  `    ``// replace each node with the required sum ` `    ``INT i = ``new` `INT(); ` `     `  `    ``i.data=``1``; ` `     `  `    ``replaceNodeWithSum(root, arr, i); ` `} ` `  `  `// function to print the preorder traversal ` `// of a binary tree ` `static` `void` `preorderTraversal( Node root) ` `{ ` `    ``// if root is null ` `    ``if` `(root==``null``) ` `        ``return``; ` `  `  `    ``// first print the data of node ` `    ``System.out.print( root.data + ``" "``); ` `  `  `    ``// then recur on left subtree ` `    ``preorderTraversal(root.left); ` `  `  `    ``// now recur on right subtree ` `    ``preorderTraversal(root.right); ` `} ` `  `  `// Driver program to test above ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``// binary tree formation ` `     ``Node root = getNode(``1``);       ``//         1         ` `    ``root.left = getNode(``2``);        ``//       /   \       ` `    ``root.right = getNode(``3``);       ``//     2      3      ` `    ``root.left.left = getNode(``4``);  ``//    /  \  /   \    ` `    ``root.left.right = getNode(``5``); ``//   4   5  6   7    ` `    ``root.right.left = getNode(``6``); ` `    ``root.right.right = getNode(``7``); ` `  `  `    ``System.out.println( ``"Preorder Traversal before tree modification:"``); ` `    ``preorderTraversal(root); ` `  `  `    ``replaceNodeWithSumUtil(root); ` `  `  `    ``System.out.println(``"\nPreorder Traversal after tree modification:"``); ` `    ``preorderTraversal(root); ` `  `  `} ` `} ` `//contributed by Arnab Kundu `

## Python3

 `# Python3 implementation to replace each  ` `# node in binary tree with the sum of its  ` `# inorder predecessor and successor  ` ` `  `# class to get a new node of a  ` `# binary tree  ` `class` `getNode: ` `    ``def` `__init__(``self``, data): ` `         `  `        ``# put in the data  ` `        ``self``.data ``=` `data  ` `        ``self``.left ``=` `self``.right ``=` `None` `     `  `# function to store the inorder traversal  ` `# of the binary tree in 'arr'  ` `def` `storeInorderTraversal(root, arr): ` `     `  `    ``# if root is None  ` `    ``if` `(``not` `root): ` `        ``return` ` `  `    ``# first recur on left child  ` `    ``storeInorderTraversal(root.left, arr)  ` ` `  `    ``# then store the root's data in 'arr'  ` `    ``arr.append(root.data)  ` ` `  `    ``# now recur on right child  ` `    ``storeInorderTraversal(root.right, arr) ` ` `  `# function to replace each node with the  ` `# sum of its inorder predecessor and successor  ` `def` `replaceNodeWithSum(root, arr, i): ` `     `  `    ``# if root is None  ` `    ``if` `(``not` `root): ` `        ``return` ` `  `    ``# first recur on left child  ` `    ``replaceNodeWithSum(root.left, arr, i)  ` ` `  `    ``# replace node's data with the sum of its  ` `    ``# inorder predecessor and successor  ` `    ``root.data ``=` `arr[i[``0``] ``-` `1``] ``+` `arr[i[``0``] ``+` `1``]  ` ` `  `    ``# move 'i' to poto the next 'arr' element  ` `    ``i[``0``] ``+``=` `1` ` `  `    ``# now recur on right child  ` `    ``replaceNodeWithSum(root.right, arr, i) ` ` `  `# Utility function to replace each node in  ` `# binary tree with the sum of its inorder   ` `# predecessor and successor  ` `def` `replaceNodeWithSumUtil(root): ` `     `  `    ``# if tree is empty  ` `    ``if` `(``not` `root):  ` `        ``return` ` `  `    ``arr ``=` `[]  ` ` `  `    ``# store the value of inorder predecessor  ` `    ``# for the leftmost leaf  ` `    ``arr.append(``0``)  ` ` `  `    ``# store the inoder traversal of the ` `    ``# tree in 'arr'  ` `    ``storeInorderTraversal(root, arr)  ` ` `  `    ``# store the value of inorder successor  ` `    ``# for the rightmost leaf  ` `    ``arr.append(``0``)  ` ` `  `    ``# replace each node with the required sum  ` `    ``i ``=` `[``1``] ` `    ``replaceNodeWithSum(root, arr, i) ` ` `  `# function to print the preorder traversal  ` `# of a binary tree  ` `def` `preorderTraversal(root): ` `     `  `    ``# if root is None  ` `    ``if` `(``not` `root):  ` `        ``return` ` `  `    ``# first print the data of node  ` `    ``print``(root.data, end ``=` `" "``) ` ` `  `    ``# then recur on left subtree  ` `    ``preorderTraversal(root.left)  ` ` `  `    ``# now recur on right subtree  ` `    ``preorderTraversal(root.right) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# binary tree formation  ` `    ``root ``=` `getNode(``1``) ``#         1      ` `    ``root.left ``=` `getNode(``2``)     ``#     / \      ` `    ``root.right ``=` `getNode(``3``)     ``#     2     3      ` `    ``root.left.left ``=` `getNode(``4``) ``# / \ / \  ` `    ``root.left.right ``=` `getNode(``5``) ``# 4 5 6 7  ` `    ``root.right.left ``=` `getNode(``6``)  ` `    ``root.right.right ``=` `getNode(``7``)  ` ` `  `    ``print``(``"Preorder Traversal before"``,  ` `                 ``"tree modification:"``)  ` `    ``preorderTraversal(root)  ` ` `  `    ``replaceNodeWithSumUtil(root)  ` `    ``print``() ` `    ``print``(``"Preorder Traversal after"``,  ` `                ``"tree modification:"``)  ` `    ``preorderTraversal(root) ` ` `  `# This code is contributed by PranchalK `

## C#

 `// C# implementation to replace each  ` `// node in binary tree with the sum  ` `// of its inorder predecessor and successor  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// node of a binary tree  ` `public` `class` `Node ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` `} ` ` `  `// INT class  ` `public` `class` `INT ` `{ ` `    ``public` `int` `data; ` `} ` ` `  `// function to get a new node  ` `// of a binary tree  ` `public` `static` `Node getNode(``int` `data) ` `{ ` `    ``// allocate node  ` `    ``Node new_node = ``new` `Node(); ` ` `  `    ``// put in the data;  ` `    ``new_node.data = data; ` `    ``new_node.left = new_node.right = ``null``; ` ` `  `    ``return` `new_node; ` `} ` ` `  `// function to store the inorder traversal  ` `// of the binary tree in 'arr'  ` `public` `static` `void` `storeInorderTraversal(Node root, ` `                                         ``List<``int``> arr) ` `{ ` `    ``// if root is null  ` `    ``if` `(root == ``null``) ` `    ``{ ` `        ``return``; ` `    ``} ` ` `  `    ``// first recur on left child  ` `    ``storeInorderTraversal(root.left, arr); ` ` `  `    ``// then store the root's data in 'arr'  ` `    ``arr.Add(root.data); ` ` `  `    ``// now recur on right child  ` `    ``storeInorderTraversal(root.right, arr); ` `} ` ` `  `// function to replace each node with  ` `// the sum of its inorder predecessor  ` `// and successor  ` `public` `static` `void` `replaceNodeWithSum(Node root, ` `                                      ``List<``int``> arr, INT i) ` `{ ` `    ``// if root is null  ` `    ``if` `(root == ``null``) ` `    ``{ ` `        ``return``; ` `    ``} ` ` `  `    ``// first recur on left child  ` `    ``replaceNodeWithSum(root.left, arr, i); ` ` `  `    ``// replace node's data with the  ` `    ``// sum of its inorder predecessor ` `    ``// and successor  ` `    ``root.data = arr[i.data - 1] + arr[i.data + 1]; ` ` `  `    ``// move 'i' to point to the ` `    ``// next 'arr' element  ` `    ``i.data++; ` ` `  `    ``// now recur on right child  ` `    ``replaceNodeWithSum(root.right, arr, i); ` `} ` ` `  `// Utility function to replace each  ` `// node in binary tree with the sum  ` `// of its inorder predecessor and successor  ` `public` `static` `void` `replaceNodeWithSumUtil(Node root) ` `{ ` `    ``// if tree is empty  ` `    ``if` `(root == ``null``) ` `    ``{ ` `        ``return``; ` `    ``} ` ` `  `    ``List<``int``> arr = ``new` `List<``int``>(); ` ` `  `    ``// store the value of inorder ` `    ``// predecessor for the leftmost leaf  ` `    ``arr.Add(0); ` ` `  `    ``// store the inoder traversal  ` `    ``// of the tree in 'arr'  ` `    ``storeInorderTraversal(root, arr); ` ` `  `    ``// store the value of inorder successor  ` `    ``// for the rightmost leaf  ` `    ``arr.Add(0); ` ` `  `    ``// replace each node with  ` `    ``// the required sum  ` `    ``INT i = ``new` `INT(); ` ` `  `    ``i.data = 1; ` ` `  `    ``replaceNodeWithSum(root, arr, i); ` `} ` ` `  `// function to print the preorder  ` `// traversal of a binary tree  ` `public` `static` `void` `preorderTraversal(Node root) ` `{ ` `    ``// if root is null  ` `    ``if` `(root == ``null``) ` `    ``{ ` `        ``return``; ` `    ``} ` ` `  `    ``// first print the data of node  ` `    ``Console.Write(root.data + ``" "``); ` ` `  `    ``// then recur on left subtree  ` `    ``preorderTraversal(root.left); ` ` `  `    ``// now recur on right subtree  ` `    ``preorderTraversal(root.right); ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``// binary tree formation  ` `    ``Node root = getNode(1); ``//         1 ` `    ``root.left = getNode(2); ``//     / \ ` `    ``root.right = getNode(3); ``//     2     3 ` `    ``root.left.left = getNode(4); ``// / \ / \ ` `    ``root.left.right = getNode(5); ``// 4 5 6 7 ` `    ``root.right.left = getNode(6); ` `    ``root.right.right = getNode(7); ` ` `  `    ``Console.WriteLine(``"Preorder Traversal "` `+  ` `                ``"before tree modification:"``); ` `    ``preorderTraversal(root); ` ` `  `    ``replaceNodeWithSumUtil(root); ` ` `  `    ``Console.WriteLine(``"\nPreorder Traversal after "` `+ ` `                               ``"tree modification:"``); ` `    ``preorderTraversal(root); ` `} ` `} ` ` `  `// This code is contributed by Shrikant13 `

Output:

```Preorder Traversal before tree modification:
1 2 4 5 3 6 7
Preorder Traversal after tree modification:
11 9 2 3 13 4 3
```

Time Complexity: O(n)
Auxiliary Space: O(n)

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

25

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.