Replace every node of a Linked list with the greatest element on right side

Given a linked list, the task is to find the Next Greater Element for every node of the linked list.
Note: For nodes with no next greater element, store -1 in the result.


Input: linked list = [2, 1, 5]
Output: [5, 5, -1]

Input: linked list = [2, 7, 4, 3, 5]
Output: [7, -1, 5, 5, -1]

To solve the problem mentioned above the main idea is to use a Stack Data Structure.

  • Iterate through the linked list and insert the value and position of elements of linked list into a stack.
  • Initialize result vector with -1 for every node.
  • Update previous node’s value while current node’s value is greater than previous nodes and pop the value from stack after updating.

Below is the implementation of the above approach:






// C++ Program to find the
// Next Greater Element for
// a Linked List
#include <bits/stdc++.h>
using namespace std;
// Linked List Node
struct Node {
    int val;
    struct Node* next;
// Function to print
// next greater element
vector<int> nextLargerNodes(
    struct Node* head)
    int cur_pos = 0;
    stack<pair<int, int> > arr;
    vector<int> res;
    // Iterate for all
    // element in linked list
    while (head) {
        // Initialize every
        // position with 0
        // Check if current value is
        // greater then update previous
        while (
                   < head->val) {
                = head->val;
        // Increment the head pointer
        head = head->next;
    // Return the final result
    return res;
// Utility function to
// create a new node
Node* newNode(int val)
    struct Node* temp = new Node;
    temp->val = val;
    temp->next = NULL;
    return temp;
// Driver Program
int main()
    struct Node* head = newNode(2);
    head->next = newNode(7);
    head->next->next = newNode(4);
    head->next->next->next = newNode(3);
    head->next->next->next->next = newNode(5);
    vector<int> ans;
    ans = nextLargerNodes(head);
    for (int i = 0; i < ans.size(); i++) {
        cout << ans[i] << ", ";



7, -1, 5, 5, -1,

Time Complexity: O(N)
Auxiliary Space Complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at to report any issue with the above content.