# Repeated Unit Divisibility

A number which consists entirely repeated number of times one is said to be Repeated Unit. We shall define R(k) of length k repeated unit number. For example, R(6) = 111111.
For a given number n, a positive integer and GCD(n, 10) = 1, there exists a value k such that R(k) is divisible by n. Now let A(n) be the least such value of k i.e. A(n) = k.
Thus, we have to find for the given value of n the least such value of A(n) for which k times repeated one is divided by n.

Examples:

```Input : n = 7
Output : A(7) = 6
A(7) = 6 means 6 times one i.e. (111111) is divided by 7.

Input : n = 41
Output : A(41) = 5
A(41) = 5 means 5 times one i.e. (11111) is divided by 41.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

First of all if the given number should be coprime with 10 otherwise return 0.
If the given number is coprime with 10 then we have to find smallest number k such that R(k) = 0 mod n.
Consider the repeated units R(1), R(2), R(3), R(4) and so on. For each repeated unit R(j) suppose when calculating remainder of R(j) divided by n. There are n conceivable remainders. We get that R(i), R(j) where i < j have same remainder when divided by n. It follows that R(j) – R(i) is divided by n. This difference is repeated unit multiplied by power of 10. But, as we know that 10 and n are relatively prime, n divides R(k).

## C++

 `// CPP program to find least value of ` `// k for which R(k) is divisible by n ` `#include ` `using` `namespace` `std; ` ` `  `// To find least value of k ` `int` `repUnitValue(``int` `n) ` `{ ` ` `  `    ``// To check n is coprime or not ` `    ``if` `(n % 2 == 0 || n % 5 == 0) ` `        ``return` `0; ` ` `  `    ``// to store R(k) mod n and 10^k ` `    ``// mod n value ` `    ``int` `rem = 1; ` `    ``int` `power = 1; ` `    ``int` `k = 1; ` `    ``while` `(rem % n != 0) ` `    ``{ ` `        ``k++; ` `        ``power = power * 10 % n; ` `        ``rem = (rem + power) % n; ` `    ``} ` `     `  `    ``return` `k; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 13; ` `    ``cout << repUnitValue(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find least value of ` `// k for which R(k) is divisible by n ` `import` `java.util.*; ` ` `  `class` `GFG { ` ` `  `    ``// To find least value of k ` `    ``public` `static` `int` `repUnitValue(``int` `n) ` `    ``{ ` `         `  `        ``// To check n is coprime or not ` `        ``if` `(n % ``2` `== ``0` `|| n % ``5` `== ``0``) ` `            ``return` `0``; ` ` `  `        ``// to store the R(k) mod n and  ` `        ``// 10^k mod n value ` `        ``int` `rem = ``1``; ` `        ``int` `power = ``1``; ` `        ``int` `k = ``1``; ` `        ``while` `(rem % n != ``0``) ` `        ``{ ` `            ``k++; ` `            ``power = power * ``10` `% n; ` `            ``rem = (rem + power) % n; ` `        ``} ` `         `  `        ``return` `k; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``13``; ` `        ``System.out.println(repUnitValue(n)); ` `    ``} ` `} `

## Python3

 `# python program to find least value of ` `# k for which R(k) is divisible by n ` ` `  `# To find least value of k ` `def` `repUnitValue(n): ` `     `  `    ``# To check n is coprime or not ` `    ``if` `(n ``%` `2` `=``=` `0` `or` `n ``%` `5` `=``=` `0``): ` `        ``return` `0` ` `  `    ``# to store R(k) mod n and 10^k ` `    ``# mod n value ` `    ``rem ``=` `1` `    ``power ``=` `1` `    ``k ``=` `1` `    ``while` `(rem ``%` `n !``=` `0``): ` `         `  `        ``k ``+``=` `1` `        ``power ``=` `power ``*` `10` `%` `n ` `        ``rem ``=` `(rem ``+` `power) ``%` `n ` `     `  `    ``return` `k ` `     `  `# Driver code ` `n ``=` `13` `print``(repUnitValue(n)) ` ` `  `# This code is contributed by Sam007. `

## C#

 `// C# program to find least value of ` `// k for which R(k) is divisible by n ` `using` `System; ` ` `  `public` `class` `GFG { ` `     `  `    ``// To find least value of k ` `    ``public` `static` `int` `repUnitValue(``int` `n) ` `    ``{ ` `         `  `        ``// To check n is coprime or not ` `        ``if` `(n % 2 == 0 || n % 5 == 0) ` `            ``return` `0; ` ` `  `        ``// to store the R(k) mod n and  ` `        ``// 10^k mod n value ` `        ``int` `rem = 1; ` `        ``int` `power = 1; ` `        ``int` `k = 1; ` `        ``while` `(rem % n != 0) ` `        ``{ ` `            ``k++; ` `            ``power = power * 10 % n; ` `            ``rem = (rem + power) % n; ` `        ``} ` `         `  `        ``return` `k; ` `    ``} ` ` `  `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 13; ` `        ``Console.Write(repUnitValue(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Sam007. `

## PHP

 ` `

Output:

```6
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Sam007, jit_t

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.