Skip to content
Related Articles

Related Articles

Improve Article

Removing duplicate rows based on specific column in PySpark DataFrame

  • Last Updated : 06 Jun, 2021

In this article, we are going to drop the duplicate rows based on a specific column from dataframe using pyspark in Python. Duplicate data means the same data based on some condition (column values). For this, we are using dropDuplicates() method:

Syntax: dataframe.dropDuplicates([‘column 1′,’column 2′,’column n’]).show()


  • dataframe is the input dataframe and column name is the specific column
  • show() method is used to display the dataframe

Let’s create the dataframe.


# importing module
import pyspark
# importing sparksession from pyspark.sql
# module
from pyspark.sql import SparkSession
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
# list  of students  data
data = [["1", "sravan", "vignan"], ["2", "ojaswi", "vvit"],
        ["3", "rohith", "vvit"], ["4", "sridevi", "vignan"], 
        ["1", "sravan", "vignan"], ["5", "gnanesh", "iit"]]
# specify column names
columns = ['student ID', 'student NAME', 'college']
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
print('Actual data in dataframe')


Dropping based on one column


# remove duplicate rows based on college 
# column


Dropping based on multiple columns


# remove duplicate rows based on college 
# and ID column
dataframe.dropDuplicates(['college', 'student ID']).show()


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :