Remove minimum elements from the array such that 2*min becomes more than max

Given an array of size N. The task is to remove minimum elements from the array such that twice of minimum number is greater than the maximum number in the modified array. Print the minimum number of elements removed.

Examples:

Input: arr[] = {4, 5, 100, 9, 10, 11, 12, 15, 200}
Output: 4
Remove 4 elements (4, 5, 100, 200)
so that 2*min becomes more than max.



Input: arr[] = {4, 7, 5, 6}
Output: 0

Approach:

Below is the implementation of the above approach :

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to remove minimum elements from the
// array such that 2*min becomes more than max
#include <bits/stdc++.h>
using namespace std;
  
// Function to remove minimum elements from the
// array such that 2*min becomes more than max
int Removal(vector<int> v, int n)
{
    // Sort the array
    sort(v.begin(), v.end());
  
    // To store the required answer
    int ans = INT_MAX;
  
    // Traverse from left to right
    for (vector<int>::iterator i = v.begin(); i != v.end(); 
                                                     i++) {
  
        vector<int>::iterator j = upper_bound(v.begin(), 
                                    v.end(), (2 * (*i)));
  
        // Update the answer
        ans = min(ans, n - (int)(j - i));
    }
  
    // Return the required answer
    return ans;
}
  
// Driver code
int main()
{
    vector<int> a = { 4, 5, 100, 9, 10, 11, 12, 15, 200 };
  
    int n = a.size();
  
    // Function call
    cout << Removal(a, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to remove minimum elements from the 
// array such that 2*min becomes more than max
import java.util.Arrays;
  
class GFG 
{
  
    // Function to calculate upper bound
    public static int upperBound(int[] array,
                                 int value)
    {
        int low = 0;
        int high = array.length;
        while (low < high) 
        {
            final int mid = (low + high) / 2;
            if (value >= array[mid]) 
            {
                low = mid + 1;
            
            else 
            {
                high = mid;
            }
        }
        return low;
    }
  
    // Function to remove minimum elements from the
    // array such that 2*min becomes more than max
    public static int Removal(int[] v, int n) 
    {
  
        // Sort the array
        Arrays.sort(v);
  
        // To store the required answer
        int ans = Integer.MAX_VALUE;
        int k = 0;
  
        // Traverse from left to right
        for (int i : v) 
        {
            int j = upperBound(v, (2 * i));
  
            // Update the answer
            ans = Math.min(ans, n - (j - k));
            k++;
        }
  
        // Return the required answer
        return ans;
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        int[] a = { 4, 5, 100, 9, 10
                    11, 12, 15, 200 };
        int n = a.length;
  
        // Function call
        System.out.println(Removal(a, n));
    }
}
  
// This code is contributed by
// sanjeev2552
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to remove minimum elements 
// from the array such that 2*min becomes
// more than max
using System;
  
class GFG 
{
  
    // Function to calculate upper bound
    public static int upperBound(int[] array,
                                 int value)
    {
        int low = 0;
        int high = array.Length;
        while (low < high) 
        {
            int mid = (low + high) / 2;
            if (value >= array[mid]) 
            {
                low = mid + 1;
            
            else
            {
                high = mid;
            }
        }
        return low;
    }
  
    // Function to remove minimum elements from the
    // array such that 2*min becomes more than max
    public static int Removal(int[] v, int n) 
    {
  
        // Sort the array
        Array.Sort(v);
  
        // To store the required answer
        int ans = int.MaxValue;
        int k = 0;
  
        // Traverse from left to right
        foreach (int i in v) 
        {
            int j = upperBound(v, (2 * i));
  
            // Update the answer
            ans = Math.Min(ans, n - (j - k));
            k++;
        }
  
        // Return the required answer
        return ans;
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
        int[] a = { 4, 5, 100, 9, 10, 
                    11, 12, 15, 200 };
        int n = a.Length;
  
        // Function call
        Console.WriteLine(Removal(a, n));
    }
}
  
// This code is contributed by Rajput-Ji
chevron_right

Output :

4

Time complexity: O(NlogN)




Competitive Programmer, Full Stack Developer, Technical Content Writer, Machine Learner

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sanjeev2552, Rajput-Ji



Article Tags :