Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Remove k corner elements to maximize remaining sum

  • Difficulty Level : Basic
  • Last Updated : 31 Aug, 2021

Given an array, the task is to remove total k elements from corners to maximize the sum of remaining elements. For example, if we k = 5 and if we remove 2 elements from the left corner, then we need to remove 3 elements from the right corner.
Examples: 

Input : arr = [11, 49, 100, 20, 86, 29, 72], k = 4 
Output : 206 
Explanation :: We remove 29 and 72 from right corner. We also remove 11 and 49 from left corner to get the maximum sum as 206 for remaining elements.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : arr[] = [1, 2, 3, 4, 5, 6, 1], k = 3 
Output : 18 
Explanation :: We remove two elements from left corner (1 and 2) and one element from right corner (1). 



Naive Approach : 
1) Initialize result as negative infinity. 
2) Compute total sum. 
3) Run a loop for x = 1 to k 
…..Remove ‘x’ elements from left side and k – i elements from right side. 
…..If the remaining elements have sum more than the result, update the result.

Time Complexity: O(n * k)
Efficient Approach (Using Window Sliding Technique) 
1) Find the sum of first n-k elements and initialize this as a current sum and also initialize this as result. 
2) Run a loop for i = n-k to n-1 
….curr_sum = curr_sum – arr[i – n + k] + arr[i] 
….res = max(res, curr_sum)
In step 2, we mainly run sliding window. We remove an element from left side and add an element from right side.

Below is the c++ implementation of the above problem statement.

C++




#include <bits/stdc++.h>
using namespace std;
int calculate(int arr[], int n, int k)
{
    // Calculate the sum of all elements
    // excluding the last k elements..
    int curr_sum = 0;
    for (int i = 0; i < n - k; i++)
        curr_sum += arr[i];
 
    // now here its time to use sliding window
    // concept, remove the first element from
    // the current window and add the new element
    // in it in order to get the sum of all n-k size
    // of elements in arr.
    // Calculate the minimum sum of elements of
    // size n-k and stored it into the result
    int res = curr_sum;
    for (int i = n - k; i < n; i++) {
        curr_sum = curr_sum - arr[i - n + k] + arr[i];
        res = max(res, curr_sum);
    }
 
    // Now return result (sum of remaining n-k elements)
    return res;
}
 
// main function
int main()
{
    int arr[] = { 11, 49, 100, 20, 86, 29, 72 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 4;
    cout << "Maximum sum of remaining elements "
         << calculate(arr, n, k) << "\n";
    return 0;
}

Java




// Java program for the
// above approach
import java.util.*;
class GFG{
 
static int calculate(int[] arr,
                     int n, int k)
{
  // Calculate the total
  // sum of all elements
  // present in the array..
  int total_sum = 0;
   
  for (int i = 0; i < n; i++)
    total_sum += arr[i];
 
  // Now calculate the sum
  // of all elements excluding
  // the last k elements..
  int curr_sum = 0;
   
  for (int i = 0; i < n - k; i++)
    curr_sum += arr[i];
 
  // Now here its time to use
  // sliding window concept,
  // remove the first element
  // from the current window
  // and add the new element
  // in it in order to get
  // the sum of all n-k size
  // of elements in arr.
  // Calculate the minimum
  // sum of elements of
  // size n-k and stored it
  // into the result
  int res = curr_sum;
   
  for (int i = n - k; i < n; i++)
  {
    curr_sum = curr_sum -
               arr[i - n + k] +
               arr[i];
    res = Math.max(res, curr_sum);
  }
 
  // Now return result (sum of
  // remaining n-k elements)
  return res;
}
 
// Driver code
public static void main(String[] args)
{
  int[] arr = {11, 49, 100,
               20, 86, 29, 72};
  int n = arr.length;
  int k = 4;
  System.out.print("Maximum sum of remaining " +
                   "elements " +
                    calculate(arr, n, k) + "\n");
}
}
 
// This code is contributed by Chitranayal

Python3




def calculate(arr, n, k):
     
    # calculate the total sum of all elements
    # present in the array..
    total_sum = 0
    for i in arr:
        total_sum += i
 
    # now calculate the sum of all elements
    # excluding the last k elements..
    curr_sum = 0
    for i in range(n - k):
        curr_sum += arr[i]
 
    # now here its time to use sliding window
    # concept, remove the first element from
    # the current window and add the new element
    # in it in order to get the sum of all n-k size
    # of elements in arr.
    # Calculate the minimum sum of elements of
    # size n-k and stored it into the result
    res = curr_sum
    for i in range(n - k, n):
        curr_sum = curr_sum - arr[i - n + k] + arr[i]
        res = max(res, curr_sum)
 
    # Now return result (sum of remaining n-k elements)
    return res
 
# main function
if __name__ == '__main__':
    arr=[11, 49, 100, 20, 86, 29, 72]
    n = len(arr)
    k = 4
    print("Maximum sum of remaining elements ",calculate(arr, n, k))
 
# This code is contributed by mohit kumar 29   

C#




using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
   
static int calculate(int []arr, int n, int k)
{
     
    // Calculate the total sum of all elements
    // present in the array..
    int total_sum = 0;
    for(int i = 0; i < n; i++)
        total_sum += arr[i];
  
    // Now calculate the sum of all elements
    // excluding the last k elements..
    int curr_sum = 0;
    for(int i = 0; i < n - k; i++)
        curr_sum += arr[i];
  
    // Now here its time to use sliding window
    // concept, remove the first element from
    // the current window and add the new element
    // in it in order to get the sum of all n-k size
    // of elements in arr.
    // Calculate the minimum sum of elements of
    // size n-k and stored it into the result
    int res = curr_sum;
    for(int i = n - k; i < n; i++)
    {
        curr_sum = curr_sum -
                  arr[i - n + k] + arr[i];
        res = Math.Max(res, curr_sum);
    }
  
    // Now return result (sum of
    // remaining n-k elements)
    return res;
}
 
// Driver code
public static void Main(string[] args)
{
    int []arr = { 11, 49, 100, 20, 86, 29, 72 };
    int n = arr.Length;
    int k = 4;
     
    Console.Write("Maximum sum of remaining " +
                  "elements " +
                  calculate(arr, n, k) + "\n");
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
function calculate(arr, n, k)
{
 
    // calculate the total sum of all elements
    // present in the array..
    let total_sum = 0;
    for (let i = 0; i < n; i++)
        total_sum += arr[i];
 
    // now calculate the sum of all elements
    // excluding the last k elements..
    let curr_sum = 0;
    for (let i = 0; i < n - k; i++)
        curr_sum += arr[i];
 
    // now here its time to use sliding window
    // concept, remove the first element from
    // the current window and add the new element
    // in it in order to get the sum of all n-k size
    // of elements in arr.
    // Calculate the minimum sum of elements of
    // size n-k and stored it into the result
    let res = curr_sum;
    for (let i = n - k; i < n; i++) {
        curr_sum = curr_sum - arr[i - n + k] + arr[i];
        res = Math.max(res, curr_sum);
    }
 
    // Now return result (sum of remaining n-k elements)
    return res;
}
 
// main function
let arr = [11, 49, 100, 20, 86, 29, 72];
let n = arr.length;
let k = 4;
document.write("Maximum sum of remaining elements " + calculate(arr, n, k) + "<br>");
 
// This code is contributed by gfgking
</script>
Output: 
Maximum sum of remaining elements 206

 

Time Complexity: O(k) 
Auxiliary Space : O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!