# Remove first X rows and columns from a matrix

Given an integer X and a square matrix mat[][], the task is to remove the first X rows and columns from the given matrix and print the updated matrix.

Examples:

Input: mat[][] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{8, 9, 4, 2},
{4, 8, 9, 2} },
X = 2
Output:
4 2
9 2

Input: mat[][] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9} },
X = 1
Output:
5 6
8 9

Approach: Print the elements of the matrix arr[i][j] for all i, j ? [X, N – 1] where N is the order of the given square matrix.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `const` `int` `MAX = 50;` `// Function to print the matrix after``// ignoring first x rows and columns``void` `remove_row_col(``int` `arr[][MAX], ``int` `n, ``int` `x)``{` `    ``// Ignore first x rows and columns``    ``for` `(``int` `i = x; i < n; i++) {``        ``for` `(``int` `j = x; j < n; j++) {``            ``cout << arr[i][j] << ``" "``;``        ``}``        ``cout << endl;``    ``}``}` `// Driver Code``int` `main()``{` `    ``// Order of the square matrix``    ``int` `n = 3;``    ``int` `arr[][MAX] = { { 1, 2, 3 },``                       ``{ 4, 5, 6 },``                       ``{ 7, 8, 9 } };` `    ``int` `x = 1;``    ``remove_row_col(arr, n, x);``}`

## Java

 `// Java implementation of the approach` `import` `java.io.*;` `class` `GFG ``{` `static` `int` `MAX = ``50``;` `// Function to print the matrix after``// ignoring first x rows and columns``static` `void` `remove_row_col(``int` `arr[][], ``int` `n, ``int` `x)``{` `    ``// Ignore first x rows and columns``    ``for` `(``int` `i = x; i < n; i++) ``    ``{``        ``for` `(``int` `j = x; j < n; j++)``        ``{``            ``System.out.print( arr[i][j] + ``" "``);``        ``}``        ``System.out.println();``    ``}``}` `// Driver Code``public` `static` `void` `main (String[] args) ``{``    ``// Order of the square matrix``    ``int` `n = ``3``;``    ``int` `arr[][] = { { ``1``, ``2``, ``3` `},``                    ``{ ``4``, ``5``, ``6` `},``                    ``{ ``7``, ``8``, ``9` `} };` `    ``int` `x = ``1``;``    ``remove_row_col(arr, n, x);``}``}` `// This code is contributed by ``// shk`

## Python3

 `# Python3 implementation of the approach ` `# Function to print the matrix after ``# ignoring first x rows and columns ``def` `remove_row_col(arr, n, x): ` `    ``# Ignore first x rows and columns ``    ``for` `i ``in` `range``(x, n): ``        ``for` `j ``in` `range``(x, n): ``            ``print``(arr[i][j], end ``=` `" "``) ``        ` `        ``print``()` `# Driver Code ``if` `__name__ ``=``=` `"__main__"``:` `    ``# Order of the square matrix ``    ``n ``=` `3``    ``MAX` `=` `50``    ``arr ``=` `[[``1``, ``2``, ``3``], ``           ``[``4``, ``5``, ``6``], ``           ``[``7``, ``8``, ``9``]] ` `    ``x ``=` `1``    ``remove_row_col(arr, n, x) ``    ` `# This code is contributed by Rituraj Jain`

## C#

 `// C# implementation of the approach ``using` `System;` `class` `GFG ``{ ``    ``// Function to print the matrix after ``    ``// ignoring first x rows and columns ``    ``static` `void` `remove_row_col(``int` `[,]arr, ``int` `n, ``int` `x) ``    ``{ ``    ` `        ``// Ignore first x rows and columns ``        ``for` `(``int` `i = x; i < n; i++) ``        ``{ ``            ``for` `(``int` `j = x; j < n; j++) ``            ``{ ``                ``Console.Write(arr[i, j] + ``" "``); ``            ``} ``            ``Console.WriteLine(); ``        ``} ``    ``} ``    ` `    ``// Driver Code ``    ``public` `static` `void` `Main() ``    ``{ ``        ``// Order of the square matrix ``        ``int` `n = 3; ``        ``int` `[,]arr = { { 1, 2, 3 }, ``                        ``{ 4, 5, 6 }, ``                        ``{ 7, 8, 9 } }; ``    ` `        ``int` `x = 1; ``        ``remove_row_col(arr, n, x); ``    ``} ``} ` `// This code is contributed by Ryuga`

## PHP

 ``

## Javascript

 ``

Output
```5 6
8 9
```

Complexity Analysis:

• Time Complexity: O(n^2), where n is an order of the given square matrix.
• Auxiliary Space: O(1), as we are not using any extra space.

Previous
Next