# Remove first X rows and columns from a matrix

Last Updated : 15 Sep, 2022

Given an integer X and a square matrix mat[][], the task is to remove the first X rows and columns from the given matrix and print the updated matrix.

Examples:

Input: mat[][] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{8, 9, 4, 2},
{4, 8, 9, 2} },
X = 2
Output:
4 2
9 2

Input: mat[][] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9} },
X = 1
Output:
5 6
8 9

Approach: Print the elements of the matrix arr[i][j] for all i, j ? [X, N – 1] where N is the order of the given square matrix.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `const` `int` `MAX = 50;`   `// Function to print the matrix after` `// ignoring first x rows and columns` `void` `remove_row_col(``int` `arr[][MAX], ``int` `n, ``int` `x)` `{`   `    ``// Ignore first x rows and columns` `    ``for` `(``int` `i = x; i < n; i++) {` `        ``for` `(``int` `j = x; j < n; j++) {` `            ``cout << arr[i][j] << ``" "``;` `        ``}` `        ``cout << endl;` `    ``}` `}`   `// Driver Code` `int` `main()` `{`   `    ``// Order of the square matrix` `    ``int` `n = 3;` `    ``int` `arr[][MAX] = { { 1, 2, 3 },` `                       ``{ 4, 5, 6 },` `                       ``{ 7, 8, 9 } };`   `    ``int` `x = 1;` `    ``remove_row_col(arr, n, x);` `}`

## Java

 `// Java implementation of the approach`   `import` `java.io.*;`   `class` `GFG ` `{`   `static` `int` `MAX = ``50``;`   `// Function to print the matrix after` `// ignoring first x rows and columns` `static` `void` `remove_row_col(``int` `arr[][], ``int` `n, ``int` `x)` `{`   `    ``// Ignore first x rows and columns` `    ``for` `(``int` `i = x; i < n; i++) ` `    ``{` `        ``for` `(``int` `j = x; j < n; j++)` `        ``{` `            ``System.out.print( arr[i][j] + ``" "``);` `        ``}` `        ``System.out.println();` `    ``}` `}`   `// Driver Code` `public` `static` `void` `main (String[] args) ` `{` `    ``// Order of the square matrix` `    ``int` `n = ``3``;` `    ``int` `arr[][] = { { ``1``, ``2``, ``3` `},` `                    ``{ ``4``, ``5``, ``6` `},` `                    ``{ ``7``, ``8``, ``9` `} };`   `    ``int` `x = ``1``;` `    ``remove_row_col(arr, n, x);` `}` `}`   `// This code is contributed by ` `// shk`

## Python3

 `# Python3 implementation of the approach `   `# Function to print the matrix after ` `# ignoring first x rows and columns ` `def` `remove_row_col(arr, n, x): `   `    ``# Ignore first x rows and columns ` `    ``for` `i ``in` `range``(x, n): ` `        ``for` `j ``in` `range``(x, n): ` `            ``print``(arr[i][j], end ``=` `" "``) ` `        `  `        ``print``()`   `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``:`   `    ``# Order of the square matrix ` `    ``n ``=` `3` `    ``MAX` `=` `50` `    ``arr ``=` `[[``1``, ``2``, ``3``], ` `           ``[``4``, ``5``, ``6``], ` `           ``[``7``, ``8``, ``9``]] `   `    ``x ``=` `1` `    ``remove_row_col(arr, n, x) ` `    `  `# This code is contributed by Rituraj Jain`

## C#

 `// C# implementation of the approach ` `using` `System;`   `class` `GFG ` `{ ` `    ``// Function to print the matrix after ` `    ``// ignoring first x rows and columns ` `    ``static` `void` `remove_row_col(``int` `[,]arr, ``int` `n, ``int` `x) ` `    ``{ ` `    `  `        ``// Ignore first x rows and columns ` `        ``for` `(``int` `i = x; i < n; i++) ` `        ``{ ` `            ``for` `(``int` `j = x; j < n; j++) ` `            ``{ ` `                ``Console.Write(arr[i, j] + ``" "``); ` `            ``} ` `            ``Console.WriteLine(); ` `        ``} ` `    ``} ` `    `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``// Order of the square matrix ` `        ``int` `n = 3; ` `        ``int` `[,]arr = { { 1, 2, 3 }, ` `                        ``{ 4, 5, 6 }, ` `                        ``{ 7, 8, 9 } }; ` `    `  `        ``int` `x = 1; ` `        ``remove_row_col(arr, n, x); ` `    ``} ` `} `   `// This code is contributed by Ryuga`

## PHP

 ``

## Javascript

 ``

Output

```5 6
8 9
```

Complexity Analysis:

• Time Complexity: O(n^2), where n is an order of the given square matrix.
• Auxiliary Space: O(1), as we are not using any extra space.

Previous
Next
Share your thoughts in the comments