Remove elements to make array satisfy arr[ i+1] < arr[i] for each valid i

• Last Updated : 29 May, 2019

Given an array arr[] of non-negative integers. We have to delete elements from this array such that arr[i + 1] > arr[j] for each valid i and this will be counted as one step. We have to apply the same operations until the array has become strictly decreasing. Now the task is to count the number of steps required to get the desired array.

Examples:

Input: arr[] = {6, 5, 8, 4, 7, 10, 9}
Output: 2
Initially 8, 7 and 10 do not satisfy the condition
so they all are deleted in the first step
and the array becomes {6, 5, 4, 9}
In the next step 9 gets deleted and
the array becomes {6, 5, 4} which is strictly decreasing.

Input: arr[] = {1, 2, 3, 4, 5}
Output: 1

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to keep the indices of only required elements that are to be checked against a particular element. Thus, we use a vector to store only the required indices. We insert every index at the back and then remove the indices from back if the following condition is satisfied.

arr[vect.back()] ≥ val[i]

We take another array in which we update the no of steps particular element takes to delete.
If status[i] = -1 then element is not to be deleted, 0 denotes first step and so on…. That’s why we will add 1 to the answer.
While popping the indices, we repeatedly update the status of elements. If all indices are popped i.e. vect.size() = 0 then this element is not to be deleted so change its status to -1.

Below is the implementation of the above approach:

CPP

 // C++ implementation of the approach#include using namespace std;int status;  // Function to return the required// number of stepsint countSteps(int* val, int n){    int sol = 0;    vector vec(1, 0);    status = -1;      // Compute the number of steps    for (int i = 1; i < n; ++i) {          // Current status is to        // delete in first step        status[i] = 0;          // Pop the indices while        // condition is satisfied        while (vec.size() > 0               && val[vec.back()] >= val[i]) {              // Inserting the correct            // step no to delete            status[i] = max(status[i],                            status[vec.back()] + 1);            vec.pop_back();        }        if (vec.size() == 0) {              // Status changed to not delete            status[i] = -1;        }          // Pushing a new index in the vector        vec.push_back(i);          // Build the solution from        // smaller to larger size        sol = max(sol, status[i] + 1);    }    return sol;}  // Driver codeint main(){    int val[] = { 6, 5, 8, 4, 7, 10, 9 };    int n = sizeof(val) / sizeof(val);      cout << countSteps(val, n);      return 0;}

Java

 // A Java implementation of the approachimport java.util.*;  class GFG {      static int []status = new int;  // Function to return the required// number of stepsstatic int countSteps(int[]val, int n){    int sol = 0;    Vector vec = new Vector<>(1);    vec.add(0);    status = -1;      // Compute the number of steps    for (int i = 1; i < n; ++i)     {          // Current status is to        // delete in first step        status[i] = 0;          // Pop the indices while        // condition is satisfied        while (vec.size() > 0            && val[vec.lastElement()] >= val[i])        {              // Inserting the correct            // step no to delete            status[i] = Math.max(status[i],                            status[vec.lastElement()] + 1);            vec.remove(vec.lastElement());        }        if (vec.isEmpty())        {              // Status changed to not delete            status[i] = -1;        }          // Pushing a new index in the vector        vec.add(i);          // Build the solution from        // smaller to larger size        sol = Math.max(sol, status[i] + 1);    }    return sol;}  // Driver codepublic static void main(String[] args) {    int val[] = { 6, 5, 8, 4, 7, 10, 9 };    int n = val.length;      System.out.println(countSteps(val, n));}}  /* This code contributed by PrinciRaj1992 */

Python3

 # Python3 implementation of the approach   status = *100000;   # Function to return the required # number of steps def countSteps(val, n) :          sol = 0;     vec = [1, 0];     status = -1;       # Compute the number of steps     for i in range(n) :          # Current status is to         # delete in first step         status[i] = 0;           # Pop the indices while         # condition is satisfied         while (len(vec) > 0            and val[vec[len(vec)-1]] >= val[i]) :               # Inserting the correct             # step no to delete             status[i] = max(status[i],                             status[len(vec)-1] + 1);             vec.pop();                   if (len(vec) == 0) :              # Status changed to not delete             status[i] = -1;                     # Pushing a new index in the vector         vec.append(i);           # Build the solution from         # smaller to larger size         sol = max(sol, status[i] + 1);           return sol;     # Driver code if __name__ == "__main__" :       val = [ 6, 5, 8, 4, 7, 10, 9 ];     n = len(val);       print(countSteps(val, n));       # This code is contributed by AnkitRai01

C#

 // A C# implementation of the approach using System;using System.Collections.Generic;  class GFG {       static int []status = new int;   // Function to return the required // number of steps static int countSteps(int[]val, int n) {     int sol = 0;     List vec = new List(1);     vec.Add(0);     status = -1;       // Compute the number of steps     for (int i = 1; i < n; ++i)     {           // Current status is to         // delete in first step         status[i] = 0;           // Pop the indices while         // condition is satisfied         while (vec.Count > 0            && val[vec[vec.Count-1]] >= val[i])         {               // Inserting the correct             // step no to delete             status[i] = Math.Max(status[i],                             status[vec[vec.Count-1]] + 1);             vec.Remove(vec[vec.Count-1]);         }         if (vec.Count == 0)         {               // Status changed to not delete             status[i] = -1;         }           // Pushing a new index in the vector         vec.Add(i);           // Build the solution from         // smaller to larger size         sol = Math.Max(sol, status[i] + 1);     }     return sol; }   // Driver code public static void Main(String[] args) {     int []val = { 6, 5, 8, 4, 7, 10, 9 };     int n = val.Length;       Console.WriteLine(countSteps(val, n)); } }   // This code contributed by Rajput-Ji
Output:
2

My Personal Notes arrow_drop_up