Remove array end element to maximize the sum of product

Given an array of N positive integers. We are allowed to remove element from either of the two ends i.e from the left side or right side of the array. Each time we remove an element, score is increased by value of element * (number of element already removed + 1). The task is to find the maximum score that can be obtained by removing all the element.

Examples:

Input : arr[] = { 1, 3, 1, 5, 2 }.
Output : 43
Remove 1 from left side (score = 1*1 = 1)
then remove 2, score = 1 + 2*2 = 5
then remove 3, score = 5 + 3*3 = 14
then remove 1, score = 14 + 1*4 = 18
then remove 5, score = 18 + 5*5 = 43.

Input :  arr[] = { 1, 2 }
Output : 5.



The idea is to use Dynamic Programming. Make a 2D matrix named dp[][] initialised with 0, where dp[i][j] denote the maximum value of score from index from index ito index j of the array. So, our final result will be stored in dp[0][n-1].
Now, value for dp[i][j] will be maximum of arr[i] * (number of element already removed + 1) + dp[i+ 1][j] or arr[j] * (number of element already removed + 1) + dp[i][j – 1].

Below is the the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find maximum score we can get
// by removing elements from either end.
#include <bits/stdc++.h>
#define MAX 50
using namespace std;
  
int solve(int dp[][MAX], int a[], int low, int high,
                                          int turn)
{
    // If only one element left.
    if (low == high)
        return a[low] * turn;
  
    // If already calculated, return the value.
    if (dp[low][high] != 0)
        return dp[low][high];
  
    // Computing Maximum value when element at 
    // index i and index j is to be chosed.
    dp[low][high] = max(a[low] * turn + solve(dp, a, 
                            low + 1, high, turn + 1),
                        a[high] * turn + solve(dp, a, 
                           low, high - 1, turn + 1));
  
    return dp[low][high];
}
  
// Driven Program
int main()
{
    int arr[] = { 1, 3, 1, 5, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    int dp[MAX][MAX];
    memset(dp, 0, sizeof(dp));
  
    cout << solve(dp, arr, 0, n - 1, 1) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum score we can get
// by removing elements from either end.
  
public class GFG {
  
    static final int MAX = 50;
  
    static int solve(int dp[][], int a[], int low, int high,
            int turn) {
        // If only one element left.
        if (low == high) {
            return a[low] * turn;
        }
  
        // If already calculated, return the value.
        if (dp[low][high] != 0) {
            return dp[low][high];
        }
  
        // Computing Maximum value when element at 
        // index i and index j is to be chosed.
        dp[low][high] = Math.max(a[low] * turn + solve(dp, a,
                low + 1, high, turn + 1),
                a[high] * turn + solve(dp, a,
                        low, high - 1, turn + 1));
  
        return dp[low][high];
    }
  
// Driven Program
    public static void main(String args[]) {
        int arr[] = {1, 3, 1, 5, 2};
        int n = arr.length;
  
        int dp[][] = new int[MAX][MAX];
  
        System.out.println(solve(dp, arr, 0, n - 1, 1));
  
    }
}
  
/*This code is contributed by 29AjayKumar*/

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find maximum
# score we can get by removing
# elements from either end.
MAX = 50
  
def solve(dp, a, low, high, turn):
  
    # If only one element left.
    if (low == high):
        return a[low] * turn
  
    # If already calculated, 
    # return the value.
    if (dp[low][high] != 0):
        return dp[low][high]
  
    # Computing Maximum value when element  
    # at index i and index j is to be chosed.
    dp[low][high] = max(a[low] * turn + solve(dp, a, 
                          low + 1, high, turn + 1),
                        a[high] * turn + solve(dp, a, 
                          low, high - 1, turn + 1));
  
    return dp[low][high]
  
# Driver Code
if __name__ == "__main__":
    arr = [ 1, 3, 1, 5, 2 ]
    n = len(arr)
  
    dp = [[0 for x in range(MAX)]
             for y in range(MAX)]
  
    print(solve(dp, arr, 0, n - 1, 1))
  
# This code is contributed by ChitraNayal

chevron_right



Output:

43

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : ChitraNayal, 29AjayKumar