Remove all nodes which don’t lie in any path with sum>= k
Given a binary tree, a complete path is defined as a path from root to a leaf. The sum of all nodes on that path is defined as the sum of that path. Given a number K, you have to remove (prune the tree) all nodes which don’t lie in any path with sum>=k.
Note: A node can be part of multiple paths. So we have to delete it only in case when all paths from it have sum less than K.
Consider the following Binary Tree 1 / \ 2 3 / \ / \ 4 5 6 7 / \ / / 8 9 12 10 / \ \ 13 14 11 / 15 For input k = 20, the tree should be changed to following (Nodes with values 6 and 8 are deleted) 1 / \ 2 3 / \ \ 4 5 7 \ / / 9 12 10 / \ \ 13 14 11 / 15 For input k = 45, the tree should be changed to following. 1 / 2 / 4 \ 9 \ 14 / 15
The idea is to traverse the tree and delete nodes in bottom up manner. While traversing the tree, recursively calculate the sum of nodes from root to leaf node of each path. For each visited node, check the total calculated sum against given sum “k”. If sum is less than k, then free(delete) that node (leaf node) and return the sum back to the previous node. Since the path is from root to leaf and nodes are deleted in bottom up manner, a node is deleted only when all of its descendants are deleted. Therefore, when a node is deleted, it must be a leaf in the current Binary Tree.
Following is the implementation of the above approach.
C++
#include <bits/stdc++.h> using namespace std; // A utility function to get maximum of two integers int max( int l, int r) { return (l > r ? l : r); } // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // A utility function to create a new Binary Tree node with given data struct Node* newNode( int data) { struct Node* node = ( struct Node*) malloc ( sizeof ( struct Node)); node->data = data; node->left = node->right = NULL; return node; } // print the tree in LVR (Inorder traversal) way. void print( struct Node *root) { if (root != NULL) { print(root->left); cout << " " << root->data; print(root->right); } } /* Main function which truncates the binary tree. */ struct Node *pruneUtil( struct Node *root, int k, int *sum) { // Base Case if (root == NULL) return NULL; // Initialize left and right sums as sum from root to // this node (including this node) int lsum = *sum + (root->data); int rsum = lsum; // Recursively prune left and right subtrees root->left = pruneUtil(root->left, k, &lsum); root->right = pruneUtil(root->right, k, &rsum); // Get the maximum of left and right sums *sum = max(lsum, rsum); // If maximum is smaller than k, then this node // must be deleted if (*sum < k) { free (root); root = NULL; } return root; } // A wrapper over pruneUtil() struct Node *prune( struct Node *root, int k) { int sum = 0; return pruneUtil(root, k, &sum); } // Driver program to test above function int main() { int k = 45; struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->left->left = newNode(8); root->left->left->right = newNode(9); root->left->right->left = newNode(12); root->right->right->left = newNode(10); root->right->right->left->right = newNode(11); root->left->left->right->left = newNode(13); root->left->left->right->right = newNode(14); root->left->left->right->right->left = newNode(15); cout << "Tree before truncation\n" ; print(root); root = prune(root, k); // k is 45 cout << "\n\nTree after truncation\n" ; print(root); return 0; } // This code is contributed by shivanisinghss2110 |
C
#include <stdio.h> #include <stdlib.h> // A utility function to get maximum of two integers int max( int l, int r) { return (l > r ? l : r); } // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // A utility function to create a new Binary Tree node with given data struct Node* newNode( int data) { struct Node* node = ( struct Node*) malloc ( sizeof ( struct Node)); node->data = data; node->left = node->right = NULL; return node; } // print the tree in LVR (Inorder traversal) way. void print( struct Node *root) { if (root != NULL) { print(root->left); printf ( "%d " ,root->data); print(root->right); } } /* Main function which truncates the binary tree. */ struct Node *pruneUtil( struct Node *root, int k, int *sum) { // Base Case if (root == NULL) return NULL; // Initialize left and right sums as sum from root to // this node (including this node) int lsum = *sum + (root->data); int rsum = lsum; // Recursively prune left and right subtrees root->left = pruneUtil(root->left, k, &lsum); root->right = pruneUtil(root->right, k, &rsum); // Get the maximum of left and right sums *sum = max(lsum, rsum); // If maximum is smaller than k, then this node // must be deleted if (*sum < k) { free (root); root = NULL; } return root; } // A wrapper over pruneUtil() struct Node *prune( struct Node *root, int k) { int sum = 0; return pruneUtil(root, k, &sum); } // Driver program to test above function int main() { int k = 45; struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->left->left = newNode(8); root->left->left->right = newNode(9); root->left->right->left = newNode(12); root->right->right->left = newNode(10); root->right->right->left->right = newNode(11); root->left->left->right->left = newNode(13); root->left->left->right->right = newNode(14); root->left->left->right->right->left = newNode(15); printf ( "Tree before truncation\n" ); print(root); root = prune(root, k); // k is 45 printf ( "\n\nTree after truncation\n" ); print(root); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { // A utility function to get // maximum of two integers static int max( int l, int r) { return (l > r ? l : r); } // A Binary Tree Node static class Node { int data; Node left, right; }; static class INT { int v; INT( int a) { v = a; } } // A utility function to create // a new Binary Tree node with // given data static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return node; } // print the tree in LVR // (Inorder traversal) way. static void print(Node root) { if (root != null ) { print(root.left); System.out.print(root.data + " " ); print(root.right); } } // Main function which // truncates the binary tree. static Node pruneUtil(Node root, int k, INT sum) { // Base Case if (root == null ) return null ; // Initialize left and right // sums as sum from root to // this node (including this node) INT lsum = new INT(sum.v + (root.data)); INT rsum = new INT(lsum.v); // Recursively prune left // and right subtrees root.left = pruneUtil(root.left, k, lsum); root.right = pruneUtil(root.right, k, rsum); // Get the maximum of // left and right sums sum.v = max(lsum.v, rsum.v); // If maximum is smaller // than k, then this node // must be deleted if (sum.v < k) { root = null ; } return root; } // A wrapper over pruneUtil() static Node prune(Node root, int k) { INT sum = new INT( 0 ); return pruneUtil(root, k, sum); } // Driver Code public static void main(String args[]) { int k = 45 ; Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.left = newNode( 6 ); root.right.right = newNode( 7 ); root.left.left.left = newNode( 8 ); root.left.left.right = newNode( 9 ); root.left.right.left = newNode( 12 ); root.right.right.left = newNode( 10 ); root.right.right.left.right = newNode( 11 ); root.left.left.right.left = newNode( 13 ); root.left.left.right.right = newNode( 14 ); root.left.left.right.right.left = newNode( 15 ); System.out.println( "Tree before truncation\n" ); print(root); root = prune(root, k); // k is 45 System.out.println( "\n\nTree after truncation\n" ); print(root); } } // This code is contributed by Arnab Kundu |
Python3
# A class to create a new Binary Tree # node with given data class newNode: def __init__( self , data): self .data = data self .left = self .right = None # print the tree in LVR (Inorder traversal) way. def Print (root): if (root ! = None ): Print (root.left) print (root.data, end = " " ) Print (root.right) # Main function which truncates # the binary tree. def pruneUtil(root, k, Sum ): # Base Case if (root = = None ): return None # Initialize left and right Sums as # Sum from root to this node # (including this node) lSum = [ Sum [ 0 ] + (root.data)] rSum = [lSum[ 0 ]] # Recursively prune left and right # subtrees root.left = pruneUtil(root.left, k, lSum) root.right = pruneUtil(root.right, k, rSum) # Get the maximum of left and right Sums Sum [ 0 ] = max (lSum[ 0 ], rSum[ 0 ]) # If maximum is smaller than k, # then this node must be deleted if ( Sum [ 0 ] < k[ 0 ]): root = None return root # A wrapper over pruneUtil() def prune(root, k): Sum = [ 0 ] return pruneUtil(root, k, Sum ) # Driver Code if __name__ = = '__main__' : k = [ 45 ] root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) root.right.left = newNode( 6 ) root.right.right = newNode( 7 ) root.left.left.left = newNode( 8 ) root.left.left.right = newNode( 9 ) root.left.right.left = newNode( 12 ) root.right.right.left = newNode( 10 ) root.right.right.left.right = newNode( 11 ) root.left.left.right.left = newNode( 13 ) root.left.left.right.right = newNode( 14 ) root.left.left.right.right.left = newNode( 15 ) print ( "Tree before truncation" ) Print (root) print () root = prune(root, k) # k is 45 print ( "Tree after truncation" ) Print (root) # This code is contributed by PranchalK |
C#
using System; // C# program to implement // the above approach public class GFG { // A utility function to get // maximum of two integers public static int max( int l, int r) { return (l > r ? l : r); } // A Binary Tree Node public class Node { public int data; public Node left, right; } public class INT { public int v; public INT( int a) { v = a; } } // A utility function to create // a new Binary Tree node with // given data public static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return node; } // print the tree in LVR // (Inorder traversal) way. public static void print(Node root) { if (root != null ) { print(root.left); Console.Write(root.data + " " ); print(root.right); } } // Main function which // truncates the binary tree. public static Node pruneUtil(Node root, int k, INT sum) { // Base Case if (root == null ) { return null ; } // Initialize left and right // sums as sum from root to // this node (including this node) INT lsum = new INT(sum.v + (root.data)); INT rsum = new INT(lsum.v); // Recursively prune left // and right subtrees root.left = pruneUtil(root.left, k, lsum); root.right = pruneUtil(root.right, k, rsum); // Get the maximum of // left and right sums sum.v = max(lsum.v, rsum.v); // If maximum is smaller // than k, then this node // must be deleted if (sum.v < k) { root = null ; } return root; } // A wrapper over pruneUtil() public static Node prune(Node root, int k) { INT sum = new INT(0); return pruneUtil(root, k, sum); } // Driver Code public static void Main( string [] args) { int k = 45; Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); root.left.left.left = newNode(8); root.left.left.right = newNode(9); root.left.right.left = newNode(12); root.right.right.left = newNode(10); root.right.right.left.right = newNode(11); root.left.left.right.left = newNode(13); root.left.left.right.right = newNode(14); root.left.left.right.right.left = newNode(15); Console.WriteLine( "Tree before truncation\n" ); print(root); root = prune(root, k); // k is 45 Console.WriteLine( "\n\nTree after truncation\n" ); print(root); } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript program to implement // the above approach // A utility function to get // maximum of two integers function max(l, r) { return (l > r ? l : r); } class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } class INT { constructor(a) { this .v = a; } } // A utility function to create // a new Binary Tree node with // given data function newNode(data) { let node = new Node(data); return node; } // print the tree in LVR // (Inorder traversal) way. function print(root) { if (root != null ) { print(root.left); document.write(root.data + " " ); print(root.right); } } // Main function which // truncates the binary tree. function pruneUtil(root, k, sum) { // Base Case if (root == null ) return null ; // Initialize left and right // sums as sum from root to // this node (including this node) let lsum = new INT(sum.v + (root.data)); let rsum = new INT(lsum.v); // Recursively prune left // and right subtrees root.left = pruneUtil(root.left, k, lsum); root.right = pruneUtil(root.right, k, rsum); // Get the maximum of // left and right sums sum.v = max(lsum.v, rsum.v); // If maximum is smaller // than k, then this node // must be deleted if (sum.v < k) { root = null ; } return root; } // A wrapper over pruneUtil() function prune(root, k) { let sum = new INT(0); return pruneUtil(root, k, sum); } // Driver code let k = 45; let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); root.left.left.left = newNode(8); root.left.left.right = newNode(9); root.left.right.left = newNode(12); root.right.right.left = newNode(10); root.right.right.left.right = newNode(11); root.left.left.right.left = newNode(13); root.left.left.right.right = newNode(14); root.left.left.right.right.left = newNode(15); document.write( "Tree before truncation" + "</br>" ); print(root); root = prune(root, k); // k is 45 document.write( "</br></br>" + "Tree after truncation" + "</br>" ); print(root); // This code is contributed by decode2207 </script> |
Tree before truncation 8 4 13 9 15 14 2 12 5 1 6 3 10 11 7 Tree after truncation 4 9 15 14 2 1
Time Complexity: O(n)
The solution does a single traversal of given Binary Tree.
Auxiliary Space: O(h)
Here h is the height of the tree and the extra space is used due to recursion call stack.
A Simpler Solution:
The above code can be simplified using the fact that nodes are deleted in bottom up manner. The idea is to keep reducing the sum when traversing down. When we reach a leaf and sum is greater than the leaf’s data, then we delete the leaf. Note that deleting nodes may convert a non-leaf node to a leaf node and if the data for the converted leaf node is less than the current sum, then the converted leaf should also be deleted.
Thanks to vicky for suggesting this solution in below comments.
C++
#include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // A utility function to create a new Binary // Tree node with given data struct Node* newNode( int data) { struct Node* node = ( struct Node*) malloc ( sizeof ( struct Node)); node->data = data; node->left = node->right = NULL; return node; } // print the tree in LVR (Inorder traversal) way. void print( struct Node *root) { if (root != NULL) { print(root->left); cout << root->data << " " ; print(root->right); } } /* Main function which truncates the binary tree. */ struct Node *prune( struct Node *root, int sum) { // Base Case if (root == NULL) return NULL; // Recur for left and right subtrees root->left = prune(root->left, sum - root->data); root->right = prune(root->right, sum - root->data); // If we reach leaf whose data is smaller than sum, // we delete the leaf. An important thing to note // is a non-leaf node can become leaf when its // children are deleted. if (root->left==NULL && root->right==NULL) { if (root->data < sum) { free (root); return NULL; } } return root; } // Driver program to test above function int main() { int k = 45; struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->left->left = newNode(8); root->left->left->right = newNode(9); root->left->right->left = newNode(12); root->right->right->left = newNode(10); root->right->right->left->right = newNode(11); root->left->left->right->left = newNode(13); root->left->left->right->right = newNode(14); root->left->left->right->right->left = newNode(15); cout << "Tree before truncation\n" ; print(root); root = prune(root, k); // k is 45 cout << "\n\nTree after truncation\n" ; print(root); return 0; } // This code is contributed // by Akanksha Rai |
C
#include <stdio.h> #include <stdlib.h> // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // A utility function to create a new Binary // Tree node with given data struct Node* newNode( int data) { struct Node* node = ( struct Node*) malloc ( sizeof ( struct Node)); node->data = data; node->left = node->right = NULL; return node; } // print the tree in LVR (Inorder traversal) way. void print( struct Node *root) { if (root != NULL) { print(root->left); printf ( "%d " ,root->data); print(root->right); } } /* Main function which truncates the binary tree. */ struct Node *prune( struct Node *root, int sum) { // Base Case if (root == NULL) return NULL; // Recur for left and right subtrees root->left = prune(root->left, sum - root->data); root->right = prune(root->right, sum - root->data); // If we reach leaf whose data is smaller than sum, // we delete the leaf. An important thing to note // is a non-leaf node can become leaf when its // children are deleted. if (root->left==NULL && root->right==NULL) { if (root->data < sum) { free (root); return NULL; } } return root; } // Driver program to test above function int main() { int k = 45; struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->left->left = newNode(8); root->left->left->right = newNode(9); root->left->right->left = newNode(12); root->right->right->left = newNode(10); root->right->right->left->right = newNode(11); root->left->left->right->left = newNode(13); root->left->left->right->right = newNode(14); root->left->left->right->right->left = newNode(15); printf ( "Tree before truncation\n" ); print(root); root = prune(root, k); // k is 45 printf ( "\n\nTree after truncation\n" ); print(root); return 0; } |
Java
// Java program to remove all nodes which donot // lie on path having sum>= k // Class representing binary tree node class Node { int data; Node left; Node right; // Constructor to create a new node public Node( int data) { this .data = data; left = null ; right = null ; } } // class to truncate binary tree class BinaryTree { Node root; // recursive method to truncate binary tree public Node prune(Node root, int sum) { // base case if (root == null ) return null ; // recur for left and right subtree root.left = prune(root.left, sum - root.data); root.right = prune(root.right, sum - root.data); // if node is a leaf node whose data is smaller // than the sum we delete the leaf.An important // thing to note is a non-leaf node can become // leaf when its children are deleted. if (isLeaf(root)) { if (sum > root.data) root = null ; } return root; } // utility method to check if node is leaf public boolean isLeaf(Node root) { if (root == null ) return false ; if (root.left == null && root.right == null ) return true ; return false ; } // for print traversal public void print(Node root) { // base case if (root == null ) return ; print(root.left); System.out.print(root.data + " " ); print(root.right); } } // Driver class to test above function public class GFG { public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); tree.root.left.left.left = new Node( 8 ); tree.root.left.left.right = new Node( 9 ); tree.root.left.right.left = new Node( 12 ); tree.root.right.right.left = new Node( 10 ); tree.root.right.right.left.right = new Node( 11 ); tree.root.left.left.right.left = new Node( 13 ); tree.root.left.left.right.right = new Node( 14 ); tree.root.left.left.right.right.left = new Node( 15 ); System.out.println( "Tree before truncation" ); tree.print(tree.root); tree.prune(tree.root, 45 ); System.out.println( "\nTree after truncation" ); tree.print(tree.root); } } // This code is contributed by Shweta Singh |
Python3
""" Python program to remove all nodes which don’t lie in any path with sum>= k """ # binary tree node contains data field , left # and right pointer class Node: # constructor to create tree node def __init__( self , data): self .data = data self .left = None self .right = None # Function to remove all nodes which do not # lie in the sum path def prune(root, sum ): # Base case if root is None : return None # Recur for left and right subtree root.left = prune(root.left, sum - root.data) root.right = prune(root.right, sum - root.data) # if node is leaf and sum is found greater # than data than remove node An important # thing to remember is that a non-leaf node # can become a leaf when its children are # removed if root.left is None and root.right is None : if sum > root.data: return None return root # inorder traversal def inorder(root): if root is None : return inorder(root.left) print (root.data, " ", end=" ") inorder(root.right) # Driver program to test above function root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) root.right.left = Node( 6 ) root.right.right = Node( 7 ) root.left.left.left = Node( 8 ) root.left.left.right = Node( 9 ) root.left.right.left = Node( 12 ) root.right.right.left = Node( 10 ) root.right.right.left.right = Node( 11 ) root.left.left.right.left = Node( 13 ) root.left.left.right.right = Node( 14 ) root.left.left.right.right.left = Node( 15 ) print ( "Tree before truncation" ) inorder(root) prune(root, 45 ) print ( "\nTree after truncation" ) inorder(root) # This code is contributed by Shweta Singh |
C#
using System; // C# program to remove all nodes which donot // lie on path having sum>= k // Class representing binary tree node public class Node { public int data; public Node left; public Node right; // Constructor to create a new node public Node( int data) { this .data = data; left = null ; right = null ; } } // class to truncate binary tree public class BinaryTree { public Node root; // recursive method to truncate binary tree public virtual Node prune(Node root, int sum) { // base case if (root == null ) { return null ; } // recur for left and right subtree root.left = prune(root.left, sum - root.data); root.right = prune(root.right, sum - root.data); // if node is a leaf node whose data is smaller // than the sum we delete the leaf.An important // thing to note is a non-leaf node can become // leaf when its children are deleted. if (isLeaf(root)) { if (sum > root.data) { root = null ; } } return root; } // utility method to check if node is leaf public virtual bool isLeaf(Node root) { if (root == null ) { return false ; } if (root.left == null && root.right == null ) { return true ; } return false ; } // for print traversal public virtual void print(Node root) { // base case if (root == null ) { return ; } print(root.left); Console.Write(root.data + " " ); print(root.right); } } // Driver class to test above function public class GFG { public static void Main( string [] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); tree.root.left.left.left = new Node(8); tree.root.left.left.right = new Node(9); tree.root.left.right.left = new Node(12); tree.root.right.right.left = new Node(10); tree.root.right.right.left.right = new Node(11); tree.root.left.left.right.left = new Node(13); tree.root.left.left.right.right = new Node(14); tree.root.left.left.right.right.left = new Node(15); Console.WriteLine( "Tree before truncation" ); tree.print(tree.root); tree.prune(tree.root, 45); Console.WriteLine( "\nTree after truncation" ); tree.print(tree.root); } } // This code is contributed by Shrikant13 |
Javascript
<script> // JavaScript program to remove all nodes which donot // lie on path having sum>= k // Class representing binary tree node class Node { // Constructor to create a new node constructor(data) { this .data = data; this .left = null ; this .right = null ; } } // class to truncate binary tree class BinaryTree { constructor() { this .root = null ; } // recursive method to truncate binary tree prune(root, sum) { // base case if (root == null ) { return null ; } // recur for left and right subtree root.left = this .prune(root.left, sum - root.data); root.right = this .prune(root.right, sum - root.data); // if node is a leaf node whose data is smaller // than the sum we delete the leaf.An important // thing to note is a non-leaf node can become // leaf when its children are deleted. if ( this .isLeaf(root)) { if (sum > root.data) { root = null ; } } return root; } // utility method to check if node is leaf isLeaf(root) { if (root == null ) { return false ; } if (root.left == null && root.right == null ) { return true ; } return false ; } // for print traversal print(root) { // base case if (root == null ) { return ; } this .print(root.left); document.write(root.data + " " ); this .print(root.right); } } // Driver class to test above function var tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); tree.root.left.left.left = new Node(8); tree.root.left.left.right = new Node(9); tree.root.left.right.left = new Node(12); tree.root.right.right.left = new Node(10); tree.root.right.right.left.right = new Node(11); tree.root.left.left.right.left = new Node(13); tree.root.left.left.right.right = new Node(14); tree.root.left.left.right.right.left = new Node(15); document.write( "Tree before truncation <br>" ); tree.print(tree.root); tree.prune(tree.root, 45); document.write( "<br><br>Tree after truncation<br>" ); tree.print(tree.root); </script> |
Tree before truncation 8 4 13 9 15 14 2 12 5 1 6 3 10 11 7 Tree after truncation 4 9 15 14 2 1
Time Complexity: O(n)
As we are visiting every node only once.
Auxiliary Space: O(h)
Here h is the height of the tree and the extra space is used due to recursion call stack.
Please Login to comment...