Skip to content
Related Articles

Related Articles

Mathematics | Introduction and types of Relations

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 01 Dec, 2022
Improve Article
Save Article

Relation or Binary relation R from set A to B is a subset of AxB which can be defined as aRb ↔ (a,b) € R ↔ R(a,b). A Binary relation R on a single set A is defined as a subset of AxA. For two distinct set, A and B with cardinalities m and n, the maximum cardinality of the relation R from A to B is mn. 
Domain and Range: if there are two sets A and B and Relation from A to B is R(a,b), then domain is defined as the set { a | (a,b) € R for some b in B} and Range is defined as the set {b | (a,b) € R for some a in A}. 
 

Types of Relation:

  1. Empty Relation: A relation R on a set A is called Empty if the set A is empty set.
  2. Full Relation: A binary relation R on a set A and B is called full if AXB.
  3. Reflexive Relation: A relation R on a set A is called reflexive if (a,a) € R holds for every element a € A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
  4. Irreflexive relation : A relation R on a set A is called reflexive if no (a,a) € R holds for every element a € A.i.e. if set A = {a,b} then R = {(a,b), (b,a)} is irreflexive relation.
  5. Symmetric Relation: A relation R on a set A is called symmetric if (b,a) € R holds when (a,b) € R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric.
  6. AntiSymmetric Relation: A relation R on a set A is called antisymmetric if (a,b)€ R and (b,a) € R then a = b is called antisymmetric.i.e. The relation R = {(a,b)→ R|a ≤ b} is anti-symmetric since a ≤ b and b ≤ a implies a = b.
  7. Transitive Relation: A relation R on a set A is called transitive if (a,b) € R and (b,c) € R then (a,c) € R for all a,b,c € A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
  8. Equivalence Relation: A relation is an Equivalence Relation if it is reflexive, symmetric, and transitive. i.e. relation R={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)} on set A={1,2,3} is equivalence relation as it is reflexive, symmetric, and transitive. Number of equivalence relation in a set containing n elements is given by Bell number.
  9. Asymmetric relation: Asymmetric relation is opposite of symmetric relation. A relation R on a set A is called asymmetric if no (b,a) € R when (a,b) € R.
My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!