# Regular polygon using only 1s in a binary numbered circle

Given an array of binary integers, suppose these values are kept on the circumference of a circle at an equal distance. We need to tell whether is it possible to draw a regular polygon using only 1s as its vertices and if it is possible then print the maximum number of sides that regular polygon has.

Example:

```Input : arr[] = [1, 1, 1, 0, 1, 0]
Output : Polygon possible with side length 3
We can draw a regular triangle having 1s as
its vertices as shown in below diagram (a).

Input : arr[] = [1, 0, 1, 0, 1, 0, 1, 0, 1, 1]
Output : Polygon possible with side length 5
We can draw a regular pentagon having 1s as its
vertices as shown in below diagram (b). ```

## Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

We can solve this problem by getting a relation between the number of vertices a possible polygon can have and total number of values in the array. Let a possible regular polygon in circle has K vertices or K sides then it should satisfy two things to be the answer,
If given array size is N, then K should divide N otherwise K vertices can’t divide N vertices in an equally manner to be a regular polygon.
Next thing is there should be one at every vertex of chosen polygon.
After above points, we can see that for solving this problem we need to iterate over divisors of N and then check whether every value of the array at chosen divisor’s distance is 1 or not. If it is 1 then we found our solution. We can iterate over all divisors in O(sqrt(N)) time just by iterating over from 1 to sqrt(N). you can read more about that here.

## C++

 `// C++ program to find whether a regular polygon ` `// is possible in circle with 1s as vertices ` `#include ` `using` `namespace` `std; ` ` `  `// method returns true if polygon is possible with ` `// 'midpoints' number of midpoints ` `bool` `checkPolygonWithMidpoints(``int` `arr[], ``int` `N, ` `                                  ``int` `midpoints) ` `{ ` `    ``// loop for getting first vertex of polygon ` `    ``for` `(``int` `j = 0; j < midpoints; j++) ` `    ``{ ` `        ``int` `val = 1; ` ` `  `        ``// loop over array values at 'midpoints' distance ` `        ``for` `(``int` `k = j; k < N; k += midpoints) ` `        ``{ ` `            ``// and(&) all those values, if even one of ` `            ``// them is 0, val will be 0 ` `            ``val &= arr[k]; ` `        ``} ` ` `  `        ``/*  if val is still 1 and (N/midpoints) or (number ` `            ``of vertices) are more than two (for a polygon ` `            ``minimum) print result and return true */` `        ``if` `(val && N/midpoints > 2) ` `        ``{ ` `            ``cout << ``"Polygon possible with side length "` `<< ` `                 ``<< (N/midpoints) << endl; ` `            ``return` `true``; ` `        ``} ` `    ``} ` `    ``return` `false``; ` `} ` ` `  `// method prints sides in the polygon or print not ` `// possible in case of no possible polygon ` `void` `isPolygonPossible(``int` `arr[], ``int` `N) ` `{ ` `    ``//  limit for iterating over divisors ` `    ``int` `limit = ``sqrt``(N); ` `    ``for` `(``int` `i = 1; i <= limit; i++) ` `    ``{ ` `        ``// If i divides N then i and (N/i) will ` `        ``// be divisors ` `        ``if` `(N % i == 0) ` `        ``{ ` `            ``//  check polygon for both divisors ` `            ``if` `(checkPolygonWithMidpoints(arr, N, i) || ` `                ``checkPolygonWithMidpoints(arr, N, (N/i))) ` `                ``return``; ` `        ``} ` `    ``} ` ` `  `    ``cout << ``"Not possiblen"``; ` `} ` ` `  `// Driver code to test above methods ` `int` `main() ` `{ ` `    ``int` `arr[] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 1}; ` `    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``isPolygonPossible(arr, N); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find whether a regular polygon ` `// is possible in circle with 1s as vertices ` ` `  `class` `Test ` `{ ` `    ``// method returns true if polygon is possible with ` `    ``// 'midpoints' number of midpoints ` `    ``static` `boolean` `checkPolygonWithMidpoints(``int` `arr[], ``int` `N, ` `                                      ``int` `midpoints) ` `    ``{ ` `        ``// loop for getting first vertex of polygon ` `        ``for` `(``int` `j = ``0``; j < midpoints; j++) ` `        ``{ ` `            ``int` `val = ``1``; ` `      `  `            ``// loop over array values at 'midpoints' distance ` `            ``for` `(``int` `k = j; k < N; k += midpoints) ` `            ``{ ` `                ``// and(&) all those values, if even one of ` `                ``// them is 0, val will be 0 ` `                ``val &= arr[k]; ` `            ``} ` `      `  `            ``/*  if val is still 1 and (N/midpoints) or (number ` `                ``of vertices) are more than two (for a polygon ` `                ``minimum) print result and return true */` `            ``if` `(val != ``0` `&& N/midpoints > ``2``) ` `            ``{ ` `                ``System.out.println(``"Polygon possible with side length "` `+ ` `                                               ``N/midpoints); ` `                ``return` `true``; ` `            ``} ` `        ``} ` `        ``return` `false``; ` `    ``} ` `      `  `    ``// method prints sides in the polygon or print not ` `    ``// possible in case of no possible polygon ` `    ``static` `void` `isPolygonPossible(``int` `arr[], ``int` `N) ` `    ``{ ` `        ``//  limit for iterating over divisors ` `        ``int` `limit = (``int``)Math.sqrt(N); ` `        ``for` `(``int` `i = ``1``; i <= limit; i++) ` `        ``{ ` `            ``// If i divides N then i and (N/i) will ` `            ``// be divisors ` `            ``if` `(N % i == ``0``) ` `            ``{ ` `                ``//  check polygon for both divisors ` `                ``if` `(checkPolygonWithMidpoints(arr, N, i) || ` `                    ``checkPolygonWithMidpoints(arr, N, (N/i))) ` `                    ``return``; ` `            ``} ` `        ``} ` `      `  `        ``System.out.println(``"Not possible"``); ` `    ``} ` `     `  `    ``// Driver method ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `arr[] = {``1``, ``0``, ``1``, ``0``, ``1``, ``0``, ``1``, ``0``, ``1``, ``1``}; ` ` `  `        ``isPolygonPossible(arr, arr.length); ` `    ``} ` `} `

## Python3

 `# Python3 program to find whether a  ` `# regular polygon is possible in circle ` `# with 1s as vertices  ` `from` `math ``import` `sqrt  ` ` `  `# method returns true if polygon is  ` `# possible with 'midpoints' number ` `# of midpoints  ` `def` `checkPolygonWithMidpoints(arr, N, midpoints) : ` ` `  `    ``# loop for getting first vertex of polygon  ` `    ``for` `j ``in` `range``(midpoints) : ` `     `  `        ``val ``=` `1` ` `  `        ``# loop over array values at  ` `        ``# 'midpoints' distance  ` `        ``for` `k ``in` `range``(j , N, midpoints) : ` `             `  `            ``# and(&) all those values, if even   ` `            ``# one of them is 0, val will be 0  ` `            ``val &``=` `arr[k] ` `         `  `        ``# if val is still 1 and (N/midpoints) or (number  ` `        ``# of vertices) are more than two (for a polygon  ` `        ``# minimum) print result and return true  ` `        ``if` `(val ``and` `N ``/``/` `midpoints > ``2``) : ` `         `  `            ``print``(``"Polygon possible with side length"` `, ` `                                      ``(N ``/``/` `midpoints))  ` `            ``return` `True` `     `  `    ``return` `False` ` `  `# method prints sides in the polygon or print  ` `# not possible in case of no possible polygon  ` `def` `isPolygonPossible(arr, N) : ` ` `  `    ``# limit for iterating over divisors  ` `    ``limit ``=` `sqrt(N) ` `    ``for` `i ``in` `range``(``1``, ``int``(limit) ``+` `1``) :  ` `         `  `        ``# If i divides N then i and (N/i)  ` `        ``# will be divisors  ` `        ``if` `(N ``%` `i ``=``=` `0``) : ` `         `  `            ``# check polygon for both divisors  ` `            ``if` `(checkPolygonWithMidpoints(arr, N, i) ``or` `                ``checkPolygonWithMidpoints(arr, N, (N ``/``/` `i))): ` `                ``return` `         `  `    ``print``(``"Not possiblen"``) ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[``1``, ``0``, ``1``, ``0``, ``1``, ``0``, ``1``, ``0``, ``1``, ``1``]  ` `    ``N ``=` `len``(arr)  ` `    ``isPolygonPossible(arr, N) ` ` `  `# This code is contributed by Ryuga `

## C#

 `// C# program to find whether  ` `// a regular polygon is possible ` `// in circle with 1s as vertices ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// method returns true if  ` `// polygon is possible  ` `// with 'midpoints' number ` `// of midpoints ` `static` `bool` `checkPolygonWithMidpoints(``int` `[]arr, ``int` `N, ` `                                      ``int` `midpoints) ` `{ ` `    ``// loop for getting first ` `    ``// vertex of polygon ` `    ``for` `(``int` `j = 0; j < midpoints; j++) ` `    ``{ ` `        ``int` `val = 1; ` ` `  `        ``// loop over array values  ` `        ``// at 'midpoints' distance ` `        ``for` `(``int` `k = j; k < N; k += midpoints) ` `        ``{ ` `            ``// and(&) all those values,  ` `            ``// if even one of them is 0, ` `            ``// val will be 0 ` `            ``val &= arr[k]; ` `        ``} ` ` `  `        ``/* if val is still 1 and  ` `           ``(N/midpoints) or (number ` `           ``of vertices) are more than  ` `           ``two (for a polygon minimum)  ` `           ``print result and return true */` `        ``if` `(val != 0 && N / midpoints > 2) ` `        ``{ ` `            ``Console.WriteLine(``"Polygon possible with "` `+  ` `                                        ``"side length "` `+ ` `                                         ``N / midpoints); ` `            ``return` `true``; ` `        ``} ` `    ``} ` `    ``return` `false``; ` `} ` ` `  `// method prints sides in the  ` `// polygon or print not possible ` `// in case of no possible polygon ` `static` `void` `isPolygonPossible(``int` `[]arr,  ` `                              ``int` `N) ` `{ ` `    ``// limit for iterating ` `    ``// over divisors ` `    ``int` `limit = (``int``)Math.Sqrt(N); ` `    ``for` `(``int` `i = 1; i <= limit; i++) ` `    ``{ ` `        ``// If i divides N then i  ` `        ``// and (N/i) will be divisors ` `        ``if` `(N % i == 0) ` `        ``{ ` `            ``// check polygon for ` `            ``// both divisors ` `            ``if` `(checkPolygonWithMidpoints(arr, N, i) || ` `                ``checkPolygonWithMidpoints(arr, N, (N / i))) ` `                ``return``; ` `        ``} ` `    ``} ` ` `  `    ``Console.WriteLine(``"Not possible"``); ` `} ` ` `  `// Driver Code ` `static` `public` `void` `Main () ` `{ ` `    ``int` `[]arr = {1, 0, 1, 0, 1, ` `                 ``0, 1, 0, 1, 1}; ` ` `  `    ``isPolygonPossible(arr, arr.Length); ` `} ` `} ` ` `  `// This code is contributed by jit_t `

## PHP

 ` 2) ` `        ``{ ` `            ``echo` `"Polygon possible with side length "` `, ` `                              ``(``\$N` `/ ``\$midpoints``) , ``"\n"``; ` `            ``return` `true; ` `        ``} ` `    ``} ` `    ``return` `false; ` `} ` ` `  `// method prints sides in  ` `// the polygon or print not ` `// possible in case of no ` `// possible polygon ` `function` `isPolygonPossible(``\$arr``, ``\$N``) ` `{ ` `    ``// limit for iterating ` `    ``// over divisors ` `    ``\$limit` `= sqrt(``\$N``); ` `    ``for` `(``\$i` `= 1; ``\$i` `<= ``\$limit``; ``\$i``++) ` `    ``{ ` `        ``// If i divides N then ` `        ``// i and (N/i) will be ` `        ``// divisors ` `        ``if` `(``\$N` `% ``\$i` `== 0) ` `        ``{ ` `            ``// check polygon for ` `            ``// both divisors ` `            ``if` `(checkPolygonWithMidpoints(``\$arr``, ``\$N``, ``\$i``) || ` `                ``checkPolygonWithMidpoints(``\$arr``, ``\$N``, (``\$N` `/ ``\$i``))) ` `                ``return``; ` `        ``} ` `    ``} ` ` `  `echo` `"Not possiblen"``; ` `} ` ` `  `// Driver Code ` `\$arr` `= ``array``(1, 0, 1, 0, 1, ` `             ``0, 1, 0, 1, 1); ` `\$N` `= sizeof(``\$arr``); ` `isPolygonPossible(``\$arr``, ``\$N``); ` ` `  `// This code is contributed by ajit ` `?> `

Output:

```Polygon possible with side length 5
```

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : jit_t, AnkitRai01

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.