# Reduce the number to minimum multiple of 4 after removing the digits

Given an integer N, the task is to reduce the number to a smallest positive integer X after removing some of the digits (possibly none) such that X is divisible by 4. Print -1 if it cannot be reduced to such multiple.

Examples:

Input: N = 78945666384
Output: 4
Remove all the digits except a single
occurrence of the digit ‘4’.

Input: N = 17
Output: -1

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Since the resultant number has to be minimized. So, check whether there is any digit in the number which is equal to either ‘4’ or ‘8’ because these are the digits divisible by 4 in the ascending order. If there are no such digits then check all the subsequences of digits of length 2 for any multiple of 4. If there is still no multiple of 4 then the number is not possible because any number with more than 2 digits which is a multiple of 4 will definitely have a subsequence divisible by 4 with digits less 3.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `const` `int` `TEN = 10; ` ` `  `// Function to return the minimum number ` `// that can be formed after removing ` `// the digits which is a multiple of 4 ` `int` `minNum(string str, ``int` `len) ` `{ ` `    ``int` `res = INT_MAX; ` ` `  `    ``// For every digit of the number ` `    ``for` `(``int` `i = 0; i < len; i++) { ` ` `  `        ``// Check if the current digit ` `        ``// is divisible by 4 ` `        ``if` `(str[i] == ``'4'` `|| str[i] == ``'8'``) { ` `            ``res = min(res, str[i] - ``'0'``); ` `        ``} ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < len - 1; i++) { ` `        ``for` `(``int` `j = i + 1; j < len; j++) { ` `            ``int` `num = (str[i] - ``'0'``) * TEN ` `                      ``+ (str[j] - ``'0'``); ` ` `  `            ``// If any subsequence of two ` `            ``// digits is divisible by 4 ` `            ``if` `(num % 4 == 0) { ` `                ``res = min(res, num); ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``return` `((res == INT_MAX) ? -1 : res); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``string str = ``"17"``; ` `    ``int` `len = str.length(); ` ` `  `    ``cout << minNum(str, len); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` ` `  `static` `int` `TEN = ``10``; ` ` `  `// Function to return the minimum number ` `// that can be formed after removing ` `// the digits which is a multiple of 4 ` `static` `int` `minNum(``char``[] str, ``int` `len) ` `{ ` `    ``int` `res = Integer.MAX_VALUE; ` ` `  `    ``// For every digit of the number ` `    ``for` `(``int` `i = ``0``; i < len; i++) ` `    ``{ ` ` `  `        ``// Check if the current digit ` `        ``// is divisible by 4 ` `        ``if` `(str[i] == ``'4'` `|| str[i] == ``'8'``) ` `        ``{ ` `            ``res = Math.min(res, str[i] - ``'0'``); ` `        ``} ` `    ``} ` ` `  `    ``for` `(``int` `i = ``0``; i < len - ``1``; i++) ` `    ``{ ` `        ``for` `(``int` `j = i + ``1``; j < len; j++)  ` `        ``{ ` `            ``int` `num = (str[i] - ``'0'``) * TEN ` `                    ``+ (str[j] - ``'0'``); ` ` `  `            ``// If any subsequence of two ` `            ``// digits is divisible by 4 ` `            ``if` `(num % ``4` `== ``0``) ` `            ``{ ` `                ``res = Math.min(res, num); ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``return` `((res == Integer.MAX_VALUE) ? -``1` `: res); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``String str = ``"17"``; ` `    ``int` `len = str.length(); ` ` `  `    ``System.out.print(minNum(str.toCharArray(), len)); ` ` `  `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python 3

 `# Python3 implementation of the approach ` `import` `sys ` `TEN ``=` `10` ` `  `# Function to return the minimum number ` `# that can be formed after removing ` `# the digits which is a multiple of 4 ` `def` `minNum(``str``, len1): ` `    ``res ``=` `sys.maxsize ` ` `  `    ``# For every digit of the number ` `    ``for` `i ``in` `range``(len1): ` `         `  `        ``# Check if the current digit ` `        ``# is divisible by 4 ` `        ``if` `(``str``[i] ``=``=` `'4'` `or` `str``[i] ``=``=` `'8'``): ` `            ``res ``=` `min``(res, ``ord``(``str``[i]) ``-` `ord``(``'0'``)) ` ` `  `    ``for` `i ``in` `range``(len1 ``-` `1``): ` `        ``for` `j ``in` `range``(i ``+` `1``, len1, ``1``): ` `            ``num ``=` `(``ord``(``str``[i]) ``-` `ord``(``'0'``)) ``*` `TEN ``+` `\ ` `                  ``(``ord``(``str``[j]) ``-` `ord``(``'0'``)) ` ` `  `            ``# If any subsequence of two ` `            ``# digits is divisible by 4 ` `            ``if` `(num ``%` `4` `=``=` `0``): ` `                ``res ``=` `min``(res, num) ` ` `  `    ``if` `(res ``=``=` `sys.maxsize): ` `        ``return` `-``1` `    ``else``: ` `        ``return` `res ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``str` `=` `"17"` `    ``len1 ``=` `len``(``str``) ` ` `  `    ``print``(minNum(``str``, len1)) ` `     `  `# This code is contributed by Surendra_Gangwar `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `static` `int` `TEN = 10; ` ` `  `// Function to return the minimum number ` `// that can be formed after removing ` `// the digits which is a multiple of 4 ` `static` `int` `minNum(``char``[] str, ``int` `len) ` `{ ` `    ``int` `res = ``int``.MaxValue; ` ` `  `    ``// For every digit of the number ` `    ``for` `(``int` `i = 0; i < len; i++) ` `    ``{ ` ` `  `        ``// Check if the current digit ` `        ``// is divisible by 4 ` `        ``if` `(str[i] == ``'4'` `|| str[i] == ``'8'``) ` `        ``{ ` `            ``res = Math.Min(res, str[i] - ``'0'``); ` `        ``} ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < len - 1; i++) ` `    ``{ ` `        ``for` `(``int` `j = i + 1; j < len; j++)  ` `        ``{ ` `            ``int` `num = (str[i] - ``'0'``) * TEN ` `                    ``+ (str[j] - ``'0'``); ` ` `  `            ``// If any subsequence of two ` `            ``// digits is divisible by 4 ` `            ``if` `(num % 4 == 0) ` `            ``{ ` `                ``res = Math.Min(res, num); ` `            ``} ` `        ``} ` `    ``} ` `    ``return` `((res == ``int``.MaxValue) ? -1 : res); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``String str = ``"17"``; ` `    ``int` `len = str.Length; ` ` `  `    ``Console.Write(minNum(str.ToCharArray(), len)); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```-1
```

My Personal Notes arrow_drop_up If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.