Open In App
Related Articles

Reduce the fraction to its lowest form

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers x and y and where x is divisible by y. It can be represented in the form of a fraction x/y. The task is to reduce the fraction to its lowest form.
Examples: 

Input : x = 16, y = 10
Output : x = 8, y = 5

Input : x = 10, y = 8
Output : x = 5, y = 4

Approach: Both of the values x and y will be divisible by their greatest common divisor. So if we divide x and y from the gcd(x, y) then x and y can be reduced to its simplest form.

Algorithm:

  • Create the “reduceFraction” function, which has the two integer inputs x and y.
  • Declare the variable d as an integer.
  • Call the __gcd() method with the inputs x and y, and then save the outcome in d.
  • Divide x by d, then put the outcome back into x.
  • Divide y by d, then add the answer back into y.
  • Print the lowered fraction together with the revised x and y values.
     

Below is the implementation of the above approach: 

C++




// C++ program to reduce a fraction x/y
// to its lowest form
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to reduce a fraction to its lowest form
void reduceFraction(int x, int y)
{
    int d;
    d = __gcd(x, y);
 
    x = x / d;
    y = y / d;
 
    cout << "x = " << x << ", y = " << y << endl;
}
 
// Driver Code
int main()
{
    int x = 16;
    int y = 10;
 
    reduceFraction(x, y);
 
    return 0;
}


Java




// Java program to reduce a fraction x/y
// to its lowest form
class GFG
{
 
// Function to reduce a fraction to its lowest form
static void reduceFraction(int x, int y)
{
    int d;
    d = __gcd(x, y);
 
    x = x / d;
    y = y / d;
 
    System.out.println("x = " + x + ", y = " + y);
}
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Driver Code
public static void main(String[] args)
{
    int x = 16;
    int y = 10;
 
    reduceFraction(x, y);
}
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python3 program to reduce a fraction x/y
# to its lowest form
from math import gcd
 
# Function to reduce a fraction
# to its lowest form
def reduceFraction(x, y) :
     
    d = gcd(x, y);
 
    x = x // d;
    y = y // d;
 
    print("x =", x, ", y =", y);
 
# Driver Code
if __name__ == "__main__" :
 
    x = 16;
    y = 10;
 
    reduceFraction(x, y);
 
# This code is contributed by Ryuga


C#




// C# program to reduce a fraction x/y
// to its lowest form
using System;
 
class GFG
{
  
// Function to reduce a fraction to its lowest form
static void reduceFraction(int x, int y)
{
    int d;
    d = __gcd(x, y);
  
    x = x / d;
    y = y / d;
  
    Console.WriteLine("x = " + x + ", y = " + y);
}
  
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
      
}
  
// Driver Code
public static void Main(String[] args)
{
    int x = 16;
    int y = 10;
  
    reduceFraction(x, y);
}
}
 
// This code has been contributed by 29AjayKumar


PHP




<?php
// PHP program to reduce a fraction x/y
// to its lowest form
 
// Function to reduce a fraction to its lowest form
function reduceFraction($x, $y)
{
    $d;
    $d = __gcd($x, $y);
 
    $x = $x / $d;
    $y = $y / $d;
 
    echo("x = " . $x . ", y = " . $y);
}
 
function __gcd($a, $b)
{
    if ($b == 0)
        return $a;
    return __gcd($b, $a % $b);
     
}
 
// Driver Code
$x = 16;
$y = 10;
 
reduceFraction($x, $y);
 
// This code is contributed by Rajput-Ji
?>


Javascript




<script>
 
// Javascript program to reduce a fraction x/y
// to its lowest form
 
// Function to reduce a fraction to its lowest form
function reduceFraction(x, y)
{
    let d;
    d = __gcd(x, y);
 
    x = parseInt(x / d);
    y = parseInt(y / d);
 
    document.write("x = " + x + ", y = " + y);
}
 
function __gcd(a, b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
      
}
 
// Driver Code
    let x = 16;
    let y = 10;
 
    reduceFraction(x, y);
 
</script>


Output

x = 8, y = 5

Time Complexity: O(log(max(x,y)))
Auxiliary Space: O(log(max(x,y)))


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 17 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials