Skip to content
Related Articles

Related Articles

Improve Article

Reduce array to a single element by repeatedly replacing adjacent unequal pairs with their maximum

  • Last Updated : 24 Apr, 2021

Given an array arr[] consisting of N integers, the task is to reduce the given array to a single element by repeatedly replacing any pair of consecutive unequal elements, say arr[i] and arr[i+1] with max(arr[i], arr[i + 1]) + 1. If possible, print the index of the element from where the operation can be started. Otherwise, print -1.

Examples:

Input: arr[] = {5, 3, 4, 4, 5} 
Output:
Explanation: 
Step 1: Replace arr[1] and arr[2] with max(arr[1], arr[2])+1 = max(5, 3) + 1 = 6. Therefore, arr[] = {6, 4, 4, 5}.
Step 2: Replace arr[1] and arr[2] with max(arr[1], arr[2]) + 1 = max(6, 4) + 1 = 7. Therefore, arr[] = {7, 4, 5}.
Step 3: Replace arr[1] and arr[2] with max(arr[1], arr[2])+1 = max(7, 4) + 1 = 8. Therefore, arr[] = {8, 5}.
Step 4: Replace arr[1] and arr[2] with max(arr[1], arr[2]) + 1 = max(8, 5)+1 = 9. Therefore, arr[] = {9}.

Input: arr[] ={1, 1} 
Output: -1

Naive Approach: The simplest approach is to traverse the given array and for each element arr[i], start performing the given operation continuously according to the given constraints. If for any element, the array becomes a single element, print the index i otherwise, print -1



Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach: The idea is to use a Sorting Algorithm. Notice that the answer will always be -1 if all the elements are the same. Otherwise, the index having the maximum element can be chosen to starting performing the operations. Follow the below steps to solve the problem:

  • Create another array B[] same as the given array and create a variable save initialize with -1 to store the answer.
  • Sort the array B[].
  • Traverse the array over the range [N – 1 to 0] using the variable i and if two consecutive unequal elements are found i.e., B[i] is not equals to B[i – 1], update save as save = i.
  • After traversing the array:
    • If save is -1, print -1 and return.
    • Else if save is equal to arr[0] and save is not equals arr[1], then update save as 1.
    • Else if save is equal to arr[N – 1] and save is not equal to arr[N – 2], then update save as N.
    • Otherwise, iterate a loop over the range [1, N – 1] and check if save is equal to arr[i] such that arr[i] is not equals to arr[i – 1] and arr[i+1], then update save as save = i+1.
  • After the above steps, print the index that is stored in the variable save.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the index from
// where the operation can be started
void printIndex(int arr[], int N)
{
    // Initialize B[]
    int B[N];
 
    // Initialize save
    int save = -1;
 
    // Make B[] equals to arr[]
    for (int i = 0; i < N; i++) {
        B[i] = arr[i];
    }
 
    // Sort the array B[]
    sort(B, B + N);
 
    // Traverse from N-1 to 1
    for (int i = N - 1; i >= 1; i--) {
 
        // If B[i] & B[i-1] are unequal
        if (B[i] != B[i - 1]) {
            save = B[i];
            break;
        }
    }
 
    // If all elements are same
    if (save == -1) {
        cout << -1 << endl;
        return;
    }
 
    // If arr[1] is maximum element
    if (save == arr[0]
        && save != arr[1]) {
        cout << 1;
    }
 
    // If arr[N-1] is maximum element
    else if (save == arr[N - 1]
             && save != arr[N - 2]) {
        cout << N;
    }
 
    // Find the maximum element
    for (int i = 1; i < N - 1; i++) {
 
        if (save == arr[i]
            && (save != arr[i - 1]
                || save != arr[i + 1])) {
            cout << i + 1;
            break;
        }
    }
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 5, 3, 4, 4, 5 };
 
    // Length of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    printIndex(arr, N);
 
    return 0;
}

Java




// Java program for the
// above approach
import java.util.*;
class GFG{
 
// Function to print the index
// from where the operation can
// be started
static void printIndex(int arr[],
                       int N)
{
  // Initialize B[]
  int []B = new int[N];
 
  // Initialize save
  int save = -1;
 
  // Make B[] equals to arr[]
  for (int i = 0; i < N; i++)
  {
    B[i] = arr[i];
  }
 
  // Sort the array B[]
  Arrays.sort(B);
 
  // Traverse from N-1 to 1
  for (int i = N - 1; i >= 1; i--)
  {
    // If B[i] & B[i-1] are
    // unequal
    if (B[i] != B[i - 1])
    {
      save = B[i];
      break;
    }
  }
 
  // If all elements are same
  if (save == -1)
  {
    System.out.print(-1 + "\n");
    return;
  }
 
  // If arr[1] is maximum
  // element
  if (save == arr[0] &&
      save != arr[1])
  {
    System.out.print(1);
  }
 
  // If arr[N-1] is maximum
  // element
  else if (save == arr[N - 1] &&
           save != arr[N - 2])
  {
    System.out.print(N);
  }
 
  // Find the maximum element
  for (int i = 1; i < N - 1; i++)
  {
    if (save == arr[i] &&
       (save != arr[i - 1] ||
        save != arr[i + 1]))
    {
      System.out.print(i + 1);
      break;
    }
  }
}
 
// Driver Code
public static void main(String[] args)
{
  // Given array arr[]
  int arr[] = {5, 3, 4, 4, 5};
 
  // Length of array
  int N = arr.length;
 
  // Function Call
  printIndex(arr, N);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 program for the
# above approach
 
# Function to prthe index
# from where the operation can
# be started
def printIndex(arr, N):
     
    # Initialize B
    B = [0] * (N)
 
    # Initialize save
    save = -1
     
    # Make B equals to arr
    for i in range(N):
        B[i] = arr[i]
 
    # Sort the array B
    B = sorted(B)
 
    # Traverse from N-1 to 1
    for i in range(N - 1, 1, -1):
         
        # If B[i] & B[i-1] are
        # unequal
        if (B[i] != B[i - 1]):
            save = B[i]
            break
 
    # If all elements are same
    if (save == -1):
        print(-1 + "")
        return
 
    # If arr[1] is maximum
    # element
    if (save == arr[0] and
        save != arr[1]):
        print(1)
 
    # If arr[N-1] is maximum
    # element
    elif (save == arr[N - 1] and
          save != arr[N - 2]):
        print(N)
 
    # Find the maximum element
    for i in range(1, N - 1):
        if (save == arr[i] and
           (save != arr[i - 1] or
            save != arr[i + 1])):
            print(i + 1)
            break
 
# Driver Code
if __name__ == '__main__':
     
    # Given array arr
    arr = [ 5, 3, 4, 4, 5 ]
 
    # Length of array
    N = len(arr)
 
    # Function Call
    printIndex(arr, N)
 
# This code is contributed by Rajput-Ji

C#




// C# program for the
// above approach
using System;
 
class GFG{
 
// Function to print the index
// from where the operation can
// be started
static void printIndex(int []arr,
                       int N)
{
   
  // Initialize []B
  int []B = new int[N];
 
  // Initialize save
  int save = -1;
 
  // Make []B equals to []arr
  for(int i = 0; i < N; i++)
  {
    B[i] = arr[i];
  }
 
  // Sort the array []B
  Array.Sort(B);
 
  // Traverse from N-1 to 1
  for(int i = N - 1; i >= 1; i--)
  {
     
    // If B[i] & B[i-1] are
    // unequal
    if (B[i] != B[i - 1])
    {
      save = B[i];
      break;
    }
  }
 
  // If all elements are same
  if (save == -1)
  {
    Console.Write(-1 + "\n");
    return;
  }
 
  // If arr[1] is maximum
  // element
  if (save == arr[0] &&
      save != arr[1])
  {
    Console.Write(1);
  }
 
  // If arr[N-1] is maximum
  // element
  else if (save == arr[N - 1] &&
           save != arr[N - 2])
  {
    Console.Write(N);
  }
 
  // Find the maximum element
  for(int i = 1; i < N - 1; i++)
  {
    if (save == arr[i] &&
       (save != arr[i - 1] ||
        save != arr[i + 1]))
    {
      Console.Write(i + 1);
      break;
    }
  }
}
 
// Driver Code
public static void Main(String[] args)
{
   
  // Given array []arr
  int []arr = { 5, 3, 4, 4, 5 };
 
  // Length of array
  int N = arr.Length;
 
  // Function Call
  printIndex(arr, N);
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to prlet the index
// from where the operation can
// be started
function printIndex(arr, N)
{
     
    // Initialize B[]
    let B = [];
     
    // Initialize save
    let save = -1;
     
    // Make B[] equals to arr[]
    for(let i = 0; i < N; i++)
    {
        B[i] = arr[i];
    }
     
    // Sort the array B[]
    B.sort();
     
    // Traverse from N-1 to 1
    for(let i = N - 1; i >= 1; i--)
    {
         
        // If B[i] & B[i-1] are
        // unequal
        if (B[i] != B[i - 1])
        {
            save = B[i];
            break;
        }
    }
     
    // If all elements are same
    if (save == -1)
    {
        document.write(-1 + "<br/>");
        return;
    }
     
    // If arr[1] is maximum
    // element
    if (save == arr[0] &&
        save != arr[1])
    {
        document.write(1);
    }
     
    // If arr[N-1] is maximum
    // element
    else if (save == arr[N - 1] &&
            save != arr[N - 2])
    {
        document.write(N);
    }
     
    // Find the maximum element
    for (let i = 1; i < N - 1; i++)
    {
        if (save == arr[i] &&
           (save != arr[i - 1] ||
            save != arr[i + 1]))
        {
            document.write(i + 1);
            break;
        }
    }
}
 
// Driver Code
 
// Given array arr[]
let arr = [5, 3, 4, 4, 5];
 
// Length of array
let N = arr.length;
 
// Function Call
printIndex(arr, N);
 
// This code is contribute by target_2
 
</script>
Output: 
1

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up