# Recursive Programs to find Minimum and Maximum elements of array

Given an array of integers arr, the task is to find the minimum and maximum element of that array using recursion.

Examples :

```Input: arr = {1, 4, 3, -5, -4, 8, 6};
Output: min = -5, max = 8

Input: arr = {1, 4, 45, 6, 10, -8};
Output: min = -8, max = 45```

Recursive approach to find the Minimum element in the array

Approach:

• Get the array for which the minimum is to be found
• Recursively find the minimum according to the following:
• Recursively traverse the array from the end
• Base case: If the remaining array is of length 1, return the only present element i.e. arr[0]
```if(n == 1)
return arr[0];```
• Recursive call: If the base case is not met, then call the function by passing the array of one size less from the end, i.e. from arr[0] to arr[n-1].
• Return statement: At each recursive call (except for the base case), return the minimum of the last element of the current array (i.e. arr[n-1]) and the element returned from the previous recursive call.
`return min(arr[n-1], recursive_function(arr, n-1));`
• Print the returned element from the recursive function as the minimum element

Pseudocode for Recursive function:

```If there is single element, return it.
Else return minimum of following.
a) Last Element
b) Value returned by recursive call
for n-1 elements.```

Below is the implementation of the above approach:

## C++

 `// Recursive C++ program to find minimum `` ` `#include ``using` `namespace` `std; `` ` `// function to print Minimum element using recursion ``int` `findMinRec(``int` `A[], ``int` `n) ``{ ``    ``// if size = 0 means whole array has been traversed ``    ``if` `(n == 1) ``        ``return` `A[0]; ``    ``return` `min(A[n-1], findMinRec(A, n-1)); ``} `` ` `// driver code to test above function ``int` `main() ``{ ``    ``int` `A[] = {1, 4, 45, 6, -50, 10, 2}; ``    ``int` `n = ``sizeof``(A)/``sizeof``(A[0]); ``    ``cout <<  findMinRec(A, n); ``    ``return` `0; ``} `

## Java

 `// Recursive Java program to find minimum ``import` `java.util.*; `` ` `class` `GFG { `` ` `    ``// function to return minimum element using recursion ``    ``public` `static` `int` `findMinRec(``int` `A[], ``int` `n) ``    ``{ ``      ``// if size = 0 means whole array ``      ``// has been traversed ``      ``if``(n == ``1``) ``        ``return` `A[``0``]; ``         ` `        ``return` `Math.min(A[n-``1``], findMinRec(A, n-``1``)); ``    ``} ``     ` `    ``// Driver code ``    ``public` `static` `void` `main(String args[]) ``    ``{ ``        ``int` `A[] = {``1``, ``4``, ``45``, ``6``, -``50``, ``10``, ``2``}; ``        ``int` `n = A.length; ``         ` `        ``// Function calling ``        ``System.out.println(findMinRec(A, n)); ``    ``} ``} `` ` `//This code is contributed by Niraj_Pandey `

## Python3

 `# Recursive python 3 program to  ``# find minimum `` ` `# function to print Minimum element  ``# using recursion ``def` `findMinRec(A, n): ``     ` `    ``# if size = 0 means whole array ``    ``# has been traversed ``    ``if` `(n ``=``=` `1``): ``        ``return` `A[``0``] ``    ``return` `min``(A[n ``-` `1``], findMinRec(A, n ``-` `1``)) `` ` `# Driver Code ``if` `__name__ ``=``=` `'__main__'``: ``    ``A ``=` `[``1``, ``4``, ``45``, ``6``, ``-``50``, ``10``, ``2``] ``    ``n ``=` `len``(A) ``    ``print``(findMinRec(A, n)) `` ` `# This code is contributed by ``# Shashank_Sharma `

## C#

 `// Recursive C# program to find minimum  ``using` `System; `` ` `class` `GFG ``{ ``     ` `// function to return minimum  ``// element using recursion  ``public` `static` `int` `findMinRec(``int` `[]A, ``                             ``int` `n)  ``{  ``// if size = 0 means whole array  ``// has been traversed  ``if``(n == 1)  ``    ``return` `A[0];  ``     ` `    ``return` `Math.Min(A[n - 1], ``                    ``findMinRec(A, n - 1));  ``}  `` ` `// Driver code  ``static` `public` `void` `Main () ``{ ``    ``int` `[]A = {1, 4, 45, 6, -50, 10, 2};  ``    ``int` `n = A.Length;  ``     ` `    ``// Function calling  ``    ``Console.WriteLine(findMinRec(A, n));  ``}  ``}  `` ` `// This code is contributed by Sachin `

## PHP

 ` `

## Javascript

 ``

Output
`-50`

Recursive approach to find the Maximum element in the array

Approach:

• Get the array for which the maximum is to be found
• Recursively find the maximum according to the following:
• Recursively traverse the array from the end
• Base case: If the remaining array is of length 1, return the only present element i.e. arr[0]
```if(n == 1)
return arr[0];```
• Recursive call: If the base case is not met, then call the function by passing the array of one size less from the end, i.e. from arr[0] to arr[n-1].
• Return statement: At each recursive call (except for the base case), return the maximum of the last element of the current array (i.e. arr[n-1]) and the element returned from the previous recursive call.
`return max(arr[n-1], recursive_function(arr, n-1));`
• Print the returned element from the recursive function as the maximum element

Pseudocode for Recursive function:

```If there is single element, return it.
Else return maximum of following.
a) Last Element
b) Value returned by recursive call
for n-1 elements.```

Below is the implementation of the above approach:

## C++

 `// Recursive C++ program to find maximum ``#include ``using` `namespace` `std; `` ` `// function to return maximum element using recursion ``int` `findMaxRec(``int` `A[], ``int` `n) ``{ ``    ``// if n = 0 means whole array has been traversed ``    ``if` `(n == 1) ``        ``return` `A[0]; ``    ``return` `max(A[n-1], findMaxRec(A, n-1)); ``} `` ` `// driver code to test above function ``int` `main() ``{ ``    ``int` `A[] = {1, 4, 45, 6, -50, 10, 2}; ``    ``int` `n = ``sizeof``(A)/``sizeof``(A[0]); ``    ``cout <<  findMaxRec(A, n); ``    ``return` `0; ``} `

## Java

 `// Recursive Java program to find maximum ``import` `java.util.*; `` ` `class` `GFG { ``     ` `    ``// function to return maximum element using recursion ``    ``public` `static` `int` `findMaxRec(``int` `A[], ``int` `n) ``    ``{ ``      ``// if size = 0 means whole array ``      ``// has been traversed ``      ``if``(n == ``1``) ``        ``return` `A[``0``]; ``         ` `        ``return` `Math.max(A[n-``1``], findMaxRec(A, n-``1``)); ``    ``} `` ` `    ``// Driver code ``    ``public` `static` `void` `main(String args[]) ``    ``{ ``        ``int` `A[] = {``1``, ``4``, ``45``, ``6``, -``50``, ``10``, ``2``}; ``        ``int` `n = A.length; ``         ` `        ``// Function calling ``        ``System.out.println(findMaxRec(A, n)); ``    ``} ``} `` ` `//This code is contributed by Niraj_Pandey `

## Python3

 `# Recursive Python 3 program to  ``# find maximum `` ` `# function to return maximum element ``# using recursion ``def` `findMaxRec(A, n): `` ` `    ``# if n = 0 means whole array  ``    ``# has been traversed ``    ``if` `(n ``=``=` `1``): ``        ``return` `A[``0``] ``    ``return` `max``(A[n ``-` `1``], findMaxRec(A, n ``-` `1``)) `` ` `# Driver Code ``if` `__name__ ``=``=` `"__main__"``: ``     ` `    ``A ``=` `[``1``, ``4``, ``45``, ``6``, ``-``50``, ``10``, ``2``] ``    ``n ``=` `len``(A) ``    ``print``(findMaxRec(A, n)) `` ` `# This code is contributed by ita_c `

## C#

 `// Recursive C# program to find maximum  ``using` `System; `` ` `class` `GFG ``{ ``// function to return maximum  ``// element using recursion  ``public` `static` `int` `findMaxRec(``int` `[]A,  ``                             ``int` `n)  ``{  ``// if size = 0 means whole array  ``// has been traversed  ``if``(n == 1)  ``    ``return` `A[0];  ``     ` `    ``return` `Math.Max(A[n - 1],  ``                    ``findMaxRec(A, n - 1));  ``}  `` ` `// Driver code  ``static` `public` `void` `Main () ``{ ``    ``int` `[]A = {1, 4, 45, 6, -50, 10, 2};  ``    ``int` `n = A.Length;  ``     ` `    ``// Function calling  ``    ``Console.WriteLine(findMaxRec(A, n));  ``} ``} `` ` `// This code is contributed by Sach_Code `

## PHP

 ` `

## Javascript

 ``

Output
`45`

Related article:
Program to find largest element in an array

Previous
Next