Recursive Program to print multiplication table of a number
Given a number N, the task is to print its multiplication table using recursion.
Examples
Input: N = 5
Output:
5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50Input: N = 8
Output:
8 * 1 = 8
8 * 2 = 16
8 * 3 = 24
8 * 4 = 32
8 * 5 = 40
8 * 6 = 48
8 * 7 = 56
8 * 8 = 64
8 * 9 = 72
8 * 10 = 80
Recursive approach to print multiplication table of a number
Approach:
- Get the number for which multiplication table is to print.
- Recursively iterate from value 1 to 10:
- Base case: If the value called recursively is greater than 10, exit from the function.
- Base case: If the value called recursively is greater than 10, exit from the function.
if(i > N) return ;
- Recursive call: If the base case is not met, then print its multiplication table for that value and then call the function for next iteration.
print("N*i = ", N*i) recursive_function(N, i+1);
- Return statement: At each recursive call(except the base case), return the recursive function for next iteration.
return recursive_function(N, i+1);
Below is the implementation of the above approach:
C++
// C++ program to print table // of a number using recursion #include <iostream> using namespace std; // Function that print the // table of a given number // using recursion void mul_table( int N, int i) { // Base Case if (i > 10) return ; // Print the table for // current iteration cout << N << " * " << i << " = " << N * i << endl; // Recursive call to next // iteration return mul_table(N, i + 1); } // Driver Code int main() { // Input number whose table // is to print int N = 8; // Function call to print // the table mul_table(N, 1); return 0; } |
Java
// Java program to print table // of a number using recursion class GFG { // Function that print the // table of a given number // using recursion static void mul_table( int N, int i) { // Base Case if (i > 10 ) return ; // Print the table for // current iteration System.out.println(N + " * " + i + " = " + N * i); // Recursive call to next // iteration mul_table(N, i + 1 ); } // Driver Code public static void main (String[] args) { // Input number whose table // is to print int N = 8 ; // Function call to print // the table mul_table(N, 1 ); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 program to print table # of a number using recursion # Function that print the # table of a given number # using recursion def mul_table(N, i): # Base Case if (i > 10 ): return # Print the table for # current iteration print (N, "*" ,i, "=" ,N * i) # Recursive call to next # iteration return mul_table(N, i + 1 ) # Driver Code # Input number whose table # is to print N = 8 # Function call to print # the table mul_table(N, 1 ) # This is contributed by shubhamsingh10 |
C#
// C# program to print table // of a number using recursion using System; class GFG{ // Function that print the // table of a given number // using recursion static void mul_table( int N, int i) { // Base Case if (i > 10) return ; // Print the table for // current iteration Console.WriteLine(N + " * " + i + " = " + N * i); // Recursive call to next // iteration mul_table(N, i + 1); } // Driver Code public static void Main() { // Input number whose table // is to print int N = 8; // Function call to print // the table mul_table(N, 1); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript program to print table // of a number using recursion // Function that print the // table of a given number // using recursion function mul_table(N, i) { // Base Case if (i > 10) return ; // Print the table for // current iteration document.write(N + " * " + i + " = " + N * i + "<br>" ); // Recursive call to next // iteration return mul_table(N, i + 1); } // Driver Code // Input number whose table // is to print var N = 8; // Function call to print // the table mul_table(N, 1); </script> |
Output:
8 * 1 = 8 8 * 2 = 16 8 * 3 = 24 8 * 4 = 32 8 * 5 = 40 8 * 6 = 48 8 * 7 = 56 8 * 8 = 64 8 * 9 = 72 8 * 10 = 80
Time Complexity: O(1)
Auxiliary Space: O(N) where n is recursion stack space.
Please Login to comment...