Recursive program to print all subsets with given sum

Given an array and a number, print all subsets with sum equal to given the sum.

Examples:

Input :  arr[] =  {2, 5, 8, 4, 6, 11}, sum = 13
Output : 
5 8
2 11
2 5 6

Input : arr[] =  {1, 5, 8, 4, 6, 11}, sum = 9
Output :
5 4
1 8

This problem is an extension of check if there is a subset with given sum. We recursively generate all subsets. We keep track of elements of current subset. If sum of elements in current subset becomes equal to given sum, we print the subset.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to print all subsets with given sum
#include <bits/stdc++.h>
using namespace std;
  
// The vector v stores current subset.
void printAllSubsetsRec(int arr[], int n, vector<int> v,
                        int sum)
{
    // If remaining sum is 0, then print all
    // elements of current subset.
    if (sum == 0) {
        for (auto x : v)
            cout << x << " ";
        cout << endl;
        return;
    }
  
    // If no remaining elements,
    if (n == 0)
        return;
  
    // We consider two cases for every element.
    // a) We do not include last element.
    // b) We include last element in current subset.
    printAllSubsetsRec(arr, n - 1, v, sum);
    v.push_back(arr[n - 1]);
    printAllSubsetsRec(arr, n - 1, v, sum - arr[n - 1]);
}
  
// Wrapper over printAllSubsetsRec()
void printAllSubsets(int arr[], int n, int sum)
{
    vector<int> v;
    printAllSubsetsRec(arr, n, v, sum);
}
  
// Driver code
int main()
{
    int arr[] = { 2, 5, 8, 4, 6, 11 };
    int sum = 13;
    int n = sizeof(arr) / sizeof(arr[0]);
    printAllSubsets(arr, n, sum);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print all subsets with given sum 
import java.util.*;
 class Solution
{
  
// The vector v stores current subset. 
static void printAllSubsetsRec(int arr[], int n, Vector<Integer> v, 
                        int sum) 
    // If remaining sum is 0, then print all 
    // elements of current subset. 
    if (sum == 0) { 
        for (int i=0;i<v.size();i++) 
            System.out.print( v.get(i) + " "); 
        System.out.println();
        return
    
  
    // If no remaining elements, 
    if (n == 0
        return
  
    // We consider two cases for every element. 
    // a) We do not include last element. 
    // b) We include last element in current subset. 
    printAllSubsetsRec(arr, n - 1, v, sum); 
    Vector<Integer> v1=new Vector<Integer>(v);
    v1.add(arr[n - 1]); 
    printAllSubsetsRec(arr, n - 1, v1, sum - arr[n - 1]); 
  
// Wrapper over printAllSubsetsRec() 
static void printAllSubsets(int arr[], int n, int sum) 
    Vector<Integer> v= new Vector<Integer>(); 
    printAllSubsetsRec(arr, n, v, sum); 
  
// Driver code 
public static void main(String args[]) 
    int arr[] = { 2, 5, 8, 4, 6, 11 }; 
    int sum = 13
    int n = arr.length; 
    printAllSubsets(arr, n, sum); 
      
}
//contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to print all subsets with given sum
  
# The vector v stores current subset.
def printAllSubsetsRec(arr, n, v, sum) :
  
    # If remaining sum is 0, then print all
    # elements of current subset.
    if (sum == 0) :
        for value in v :
            print(value, end=" ")
        print()
        return
      
  
    # If no remaining elements,
    if (n == 0):
        return
  
    # We consider two cases for every element.
    # a) We do not include last element.
    # b) We include last element in current subset.
    printAllSubsetsRec(arr, n - 1, v, sum)
    v1 = [] + v
    v1.append(arr[n - 1])
    printAllSubsetsRec(arr, n - 1, v1, sum - arr[n - 1])
  
  
# Wrapper over printAllSubsetsRec()
def printAllSubsets(arr, n, sum):
  
    v = []
    printAllSubsetsRec(arr, n, v, sum)
  
  
# Driver code
  
arr = [ 2, 5, 8, 4, 6, 11 ]
sum = 13
n = len(arr)
printAllSubsets(arr, n, sum)
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print all subsets with given sum 
using System;
using System.Collections.Generic;
  
class GFG 
    // The vector v stores current subset. 
    static void printAllSubsetsRec(int []arr, int n, 
                                    List<int> v, int sum) 
    
        // If remaining sum is 0, then print all 
        // elements of current subset. 
        if (sum == 0)
        
            for (int i = 0; i < v.Count; i++) 
                Console.Write( v[i]+ " "); 
            Console.WriteLine(); 
            return
        
  
        // If no remaining elements, 
        if (n == 0) 
            return
  
        // We consider two cases for every element. 
        // a) We do not include last element. 
        // b) We include last element in current subset. 
        printAllSubsetsRec(arr, n - 1, v, sum); 
        List<int> v1 = new List<int>(v); 
        v1.Add(arr[n - 1]); 
        printAllSubsetsRec(arr, n - 1, v1, sum - arr[n - 1]); 
    
  
    // Wrapper over printAllSubsetsRec() 
    static void printAllSubsets(int []arr, int n, int sum) 
    
        List<int> v = new List<int>(); 
        printAllSubsetsRec(arr, n, v, sum); 
    
  
    // Driver code 
    public static void Main() 
    
        int []arr = { 2, 5, 8, 4, 6, 11 }; 
        int sum = 13; 
        int n = arr.Length; 
        printAllSubsets(arr, n, sum); 
    
  
// This code is contributed by Rajput-Ji 

chevron_right


PHP

Output:

8 5 
6 5 2 
11 2

Time Complexity : O(2n)

Please refer below post for an optimized solution based on Dynamic Programming.

Print all subsets with given sum using Dynamic Programming



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


3


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.