# Recursive program for prime number

• Difficulty Level : Easy
• Last Updated : 27 Jan, 2022

Given a number n, check whether it’s prime number or not using recursion.
Examples:

```Input : n = 11
Output : Yes

Input : n = 15
Output : No```

The idea is based on school method to check for prime numbers.

## C++

 `// CPP Program to find whether a Number  ``// is Prime or Not using Recursion``#include ``using` `namespace` `std;` `// Returns true if n is prime, else``// return false.``// i is current divisor to check.``bool` `isPrime(``int` `n, ``int` `i = 2)``{``    ``// Base cases``    ``if` `(n <= 2)``        ``return` `(n == 2) ? ``true` `: ``false``;``    ``if` `(n % i == 0)``        ``return` `false``;``    ``if` `(i * i > n)``        ``return` `true``;` `    ``// Check for next divisor``    ``return` `isPrime(n, i + 1);``}` `// Driver Program``int` `main()``{``    ``int` `n = 15;``    ``if` `(isPrime(n))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// java Program to find whether a Number``// is Prime or Not using Recursion``import` `java.util.*;` `class` `GFG {` `    ``// Returns true if n is prime, else``    ``// return false.``    ``// i is current divisor to check.``    ``static` `boolean` `isPrime(``int` `n, ``int` `i)``    ``{` `        ``// Base cases``        ``if` `(n <= ``2``)``            ``return` `(n == ``2``) ? ``true` `: ``false``;``        ``if` `(n % i == ``0``)``            ``return` `false``;``        ``if` `(i * i > n)``            ``return` `true``;``     ` `        ``// Check for next divisor``        ``return` `isPrime(n, i + ``1``);``    ``}``    ` `    ``// Driver program to test above function``    ``public` `static` `void` `main(String[] args)``    ``{` `        ``int` `n = ``15``;` `        ``if` `(isPrime(n, ``2``))``            ``System.out.println(``"Yes"``);``        ``else``            ``System.out.println(``"No"``);``    ``}``}` `// This code is contributed by Sam007.`

## Python3

 `# Python 3 Program to find whether``# a Number is Prime or Not using``# Recursion` `# Returns true if n is prime, else``# return false.``# i is current divisor to check.``def` `isPrime(n, i ``=` `2``):` `    ``# Base cases``    ``if` `(n <``=` `2``):``        ``return` `True` `if``(n ``=``=` `2``) ``else` `False``    ``if` `(n ``%` `i ``=``=` `0``):``        ``return` `False``    ``if` `(i ``*` `i > n):``        ``return` `True` `    ``# Check for next divisor``    ``return` `isPrime(n, i ``+` `1``)`  `# Driver Program``n ``=` `15``if` `(isPrime(n)):``    ``print``(``"Yes"``)``else``:``    ``print``(``"No"``)``    ` `# This code is contributed by``# Smitha Dinesh Semwal`

## C#

 `// C# Program to find whether a Number``// is Prime or Not using Recursion``using` `System;` `class` `GFG``{``    ``// Returns true if n is prime, else``    ``// return false.``    ``// i is current divisor to check.``    ``static` `bool` `isPrime(``int` `n, ``int` `i)``    ``{` `        ``// Base cases``        ``if` `(n <= 2)``            ``return` `(n == 2) ? ``true` `: ``false``;``        ``if` `(n % i == 0)``            ``return` `false``;``        ``if` `(i * i > n)``            ``return` `true``;``    ` `        ``// Check for next divisor``        ``return` `isPrime(n, i + 1);``    ``}``    ` `    ` `    ``// Driver code``    ``static` `void` `Main()``    ``{``    ``int` `n = 15;` `        ``if` `(isPrime(n, 2))``            ``Console.Write(``"Yes"``);``        ``else``            ``Console.Write(``"No"``);``    ``}``    ` `}` `// This code is contributed by Sam007`

## PHP

 ` ``\$n``)``        ``return` `true;` `    ``// Check for next divisor``    ``return` `isPrime(``\$n``, ``\$i` `+ 1);``}` `// Driver Code``\$n` `= 15;``if` `(isPrime(``\$n``))``    ``echo``(``"Yes"``);``else``    ``echo``(``"No"``);` `// This code is contributed by Ajit.``?>`

## Javascript

 ``

Output:

`No`

My Personal Notes arrow_drop_up