Background :
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.
Example:
First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –> ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –> ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
Following is iterative Bubble sort algorithm :
// Iterative Bubble Sort
bubbleSort(arr[], n)
{
for (i = 0; i < n-1; i++)
// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
{
if(arr[j] > arr[j+1])
swap(arr[j], arr[j+1]);
}
}
See Bubble Sort for more details.
How to implement it recursively?
Recursive Bubble Sort has no performance/implementation advantages, but can be a good question to check one’s understanding of Bubble Sort and recursion.
If we take a closer look at Bubble Sort algorithm, we can notice that in first pass, we move largest element to end (Assuming sorting in increasing order). In second pass, we move second largest element to second last position and so on.
Recursion Idea.
- Base Case: If array size is 1, return.
- Do One Pass of normal Bubble Sort. This pass fixes last element of current subarray.
- Recur for all elements except last of current subarray.
Below is implementation of above idea.
C++
#include <bits/stdc++.h>
using namespace std;
void bubbleSort( int arr[], int n)
{
if (n == 1)
return ;
int count = 0;
for ( int i=0; i<n-1; i++)
if (arr[i] > arr[i+1]){
swap(arr[i], arr[i+1]);
count++;
}
if (count==0)
return ;
bubbleSort(arr, n-1);
}
void printArray( int arr[], int n)
{
for ( int i=0; i < n; i++)
cout<<arr[i]<< " " ;
cout<< "\n" ;
}
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof (arr)/ sizeof (arr[0]);
bubbleSort(arr, n);
cout<< "Sorted array : \n" ;
printArray(arr, n);
return 0;
}
|
Java
import java.util.Arrays;
public class GFG
{
static void bubbleSort( int arr[], int n)
{
if (n == 1 )
return ;
int count = 0 ;
for ( int i= 0 ; i<n- 1 ; i++)
if (arr[i] > arr[i+ 1 ])
{
int temp = arr[i];
arr[i] = arr[i+ 1 ];
arr[i+ 1 ] = temp;
count = count+ 1 ;
}
if (count == 0 )
return ;
bubbleSort(arr, n- 1 );
}
public static void main(String[] args)
{
int arr[] = { 64 , 34 , 25 , 12 , 22 , 11 , 90 };
bubbleSort(arr, arr.length);
System.out.println( "Sorted array : " );
System.out.println(Arrays.toString(arr));
}
}
|
Python3
class bubbleSort:
def __init__( self , array):
self .array = array
self .length = len (array)
def __str__( self ):
return " " .join([ str (x)
for x in self .array])
def bubbleSortRecursive( self , n = None ):
if n is None :
n = self .length
count = 0
if n = = 1 :
return
for i in range (n - 1 ):
if self .array[i] > self .array[i + 1 ]:
self .array[i], self .array[i +
1 ] = self .array[i + 1 ], self .array[i]
count = count + 1
if (count = = 0 ):
return
self .bubbleSortRecursive(n - 1 )
def main():
array = [ 64 , 34 , 25 , 12 , 22 , 11 , 90 ]
sort = bubbleSort(array)
sort.bubbleSortRecursive()
print ( "Sorted array :\n" , sort)
if __name__ = = "__main__" :
main()
|
C#
using System;
class GFG
{
static void bubbleSort( int []arr,
int n)
{
if (n == 1)
return ;
int count = 0;
for ( int i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
{
int temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
count++;
}
if (count==0)
return ;
bubbleSort(arr, n - 1);
}
static void Main()
{
int []arr = {64, 34, 25,
12, 22, 11, 90};
bubbleSort(arr, arr.Length);
Console.WriteLine( "Sorted array : " );
for ( int i = 0; i < arr.Length; i++)
Console.Write(arr[i] + " " );
}
}
|
Javascript
<script>
function bubbleSort(arr, n)
{
if (n == 1)
return ;
var count = 0;
for ( var i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
{
var temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
count++;
}
if (count == 0)
return ;
bubbleSort(arr, n - 1);
}
var arr = [64, 34, 25, 12, 22, 11, 90 ]
bubbleSort(arr, arr.length);
document.write( "Sorted array : " + "<br>" );
for ( var i = 0; i < arr.length; i++) {
document.write(arr[i] + " " );
}
</script>
|
C
#include <stdio.h>
void swap( int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
void bubbleSort( int arr[], int n)
{
if (n == 1)
return ;
int count = 0;
for ( int i=0; i<n-1; i++)
if (arr[i] > arr[i+1]){
swap(&arr[i], &arr[i+1]);
count++;
}
if (count==0)
return ;
bubbleSort(arr, n-1);
}
void printArray( int arr[], int n)
{
for ( int i=0; i < n; i++)
printf ( "%d " , arr[i]);
printf ( "\n" );
}
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof (arr)/ sizeof (arr[0]);
bubbleSort(arr, n);
printf ( "Sorted array : \n" );
printArray(arr, n);
return 0;
}
|
PHP
<?php
function bubbleSort(& $arr , $n )
{
if ( $n == 1)
return ;
$count = 0;
for ( $i =0; $i < $n -1; $i ++)
if ( $arr [ $i ] > $arr [ $i +1]){
list( $arr [ $i ], $arr [ $i +1]) = array ( $arr [ $i +1], $arr [ $i ]);
$count ++;
}
if ( $count ==0)
return ;
bubbleSort( $arr , $n -1);
}
function printArray( $arr , $n )
{
for ( $i =0; $i < $n ; $i ++)
echo $arr [ $i ]. " " ;
echo "\n" ;
}
$arr = array (64, 34, 25, 12, 22, 11, 90);
$n = sizeof( $arr );
bubbleSort( $arr , $n );
echo "Sorted array : \n" ;
printArray( $arr , $n );
?>
|
Output
Sorted array :
11 12 22 25 34 64 90
- Time Complexity: O(n*n)
- Auxiliary Space: O(n)
Question:
1. Difference between iterative and recursive bubble sort?
Ans. Recursive bubble sort runs on O(n) auxiliary space complexity whereas iterative bubble sort runs on O(1) auxiliary space complexity.
2. Which is faster iterative or recursive bubble sort?
Ans. Based on the number of comparisons in each method, the recursive bubble sort is better than the iterative bubble sort, but the time complexity for both the methods is same.
3. Which sorting method we should prefer more iterative or recursive bubble sort?
Ans. Both the methods complete the computation at the same time(according to time complexity analysis) but iterative code takes less memory than recursive one, so we should prefer iterative bubble sort more than recursive bubble sort.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!