Rearrange array to obtain maximum possible value of concatenation of prefix GCDs

Given an array arr[] consisting of N positive integers, the task is to rearrange the array elements such that the number formed by concatenating the GCD of elements of the array arr[] from index 0 to i for each index i is the maximum possible.

Examples:

Input: arr[] = {4, 2, 5}
Output: 5 4 2
Explanation:
X = 511 is the maximum value of X that can be obtained among all the rearrangement of arr[].
Possible arrangements of arr[] are:
arr[] = [2, 4, 5] → X = 221
arr[] = [2, 5, 4] → X = 211
arr[] = [4, 2, 5] → X = 421
arr[] = [4, 5, 2] → X = 411
arr[] = [5, 4, 2] → X = 511
arr[] = [5, 2, 4] → X = 511

Input: arr[] = {2, 4, 6, 8}
Output: 8 4 6
Explanation: 
X = 842 is the maximum value of X that can be obtained among all the rearrangement of arr[].
Possible arrangements of arr[] are:
arr[] = [4, 6, 8] → X = 422
arr[] = [4, 8, 6] → X = 442
arr[] = [6, 4, 8] → X = 622
arr[] = [6, 8, 4] → X = 622
arr[] = [8, 4, 6] → X = 842
arr[] = [8, 6, 4] → X = 822

Approach: The GCD of a number alone is the number itself, thus the first digit of X i.e., X[0] would always be equal to arr[0]. Thus, to ensure that X is maximum among all obtainable numbers, arr[0] needs to be maximum. Then proceed by keeping track of the GCD of the longest prefix of arr[] that has been already arranged and find the values of the consecutive elements to be placed after this prefix. Follow the steps below to solve the above problem:



  1. The largest element of the array is set as the first element, thus the first prefix correctly arranged in the array arr[].
  2. Now find the element consecutive to the last element of the prefix i.e., arr[1].
  3. Here the GCD of the longest prefix(say G) is equal to arr[0], thus traverse the remaining array to find the element that gives the greatest GCD with G.
  4. Now, swap the element arr[1] with the element that gives maximum GCD with value G, update the value of G to this maximum GCD obtained i.e., G = GCD(G, arr[1]).
  5. Now the longest fixed prefix becomes arr[0], arr[1], continue this process for finding arr[2], arr[3], …, arr[N – 1], to obtain the required array.
  6. Print rearrange array after the above steps.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum number
// obtainable from prefix GCDs
void prefixGCD(int arr[], int N)
{
    // Stores the GCD of the
    // longest prefix
    int gcc;
 
    // Sort the array
    sort(arr, arr + N);
 
    // Reverse the array
    reverse(arr, arr + N);
 
    // GCD of a[0] is a[0]
    gcc = arr[0];
    int start = 0;
 
    // Iterate to place the arr[start + 1]
    // element at it's correct position
    while (start < N - 1) {
 
        int g = 0, s1;
 
        for (int i = start + 1; i < N; i++) {
 
            // Find the element with
            // maximum GCD
            int gc = __gcd(gcc, arr[i]);
 
            // Update the value of g
            if (gc > g) {
                g = gc;
                s1 = i;
            }
        }
 
        // Update GCD of prefix
        gcc = g;
 
        // Place arr[s1] to it's
        // correct position
        swap(arr[s1], arr[start + 1]);
 
        // Increment start for the
        // remaining elements
        start++;
    }
 
    // Print the rearranged array
    for (int i = 0; i < N; i++) {
        cout << arr[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 1, 2, 3, 4 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    prefixGCD(arr, N);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java program for
// the above approach
import java.util.*;
class GFG{
 
//Function to find the maximum number
//obtainable from prefix GCDs
static void prefixGCD(int arr[], int N)
{
  // Stores the GCD of the
  // longest prefix
  int gcc;
 
  // Sort the array
  Arrays.sort(arr);
 
  // Reverse the array
  arr = reverse(arr);
 
  // GCD of a[0] is a[0]
  gcc = arr[0];
  int start = 0;
 
  // Iterate to place
  // the arr[start + 1]
  // element at it's
  // correct position
  while (start < N - 1)
  {
    int g = 0, s1 = 0;
 
    for (int i = start + 1; i < N; i++)
    {
      // Find the element with
      // maximum GCD
      int gc = __gcd(gcc, arr[i]);
 
      // Update the value of g
      if (gc > g)
      {
        g = gc;
        s1 = i;
      }
    }
 
    // Update GCD of prefix
    gcc = g;
 
    // Place arr[s1] to it's
    // correct position
    arr = swap(arr, s1, start + 1);
 
    // Increment start for the
    // remaining elements
    start++;
  }
 
  // Print the rearranged array
  for (int i = 0; i < N; i++)
  {
    System.out.print(arr[i] + " ");
  }
}
   
static int __gcd(int a, int b) 
  return b == 0 ? a : __gcd(b, a % b);    
}
 
static int[] reverse(int a[])
{
  int i, n = a.length, t;
  for (i = 0; i < n / 2; i++)
  {
    t = a[i];
    a[i] = a[n - i - 1];
    a[n - i - 1] = t;
  }
  return a;
}
 
static int[] swap(int []arr,
                  int i, int j)
{
  int temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
  return arr;
}
     
//Driver Code
public static void main(String[] args)
{
  // Given array arr[]
  int arr[] = {1, 2, 3, 4};
 
  int N = arr.length;
 
  // Function Call
  prefixGCD(arr, N);
}
}
 
//This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
from math import gcd
 
# Function to find the maximum number
# obtainable from prefix GCDs
def prefixGCD(arr, N):
     
    # Stores the GCD of the
    # longest prefix
    gcc = 0
 
    # Sort the array
    arr = sorted(arr)
 
    # Reverse the array
    arr = arr[::-1]
 
    # GCD of a[0] is a[0]
    gcc = arr[0]
    start = 0
 
    # Iterate to place the arr[start + 1]
    # element at it's correct position
    while (start < N - 1):
        g = 0
        s1 = 0
 
        for i in range(start + 1, N):
 
            # Find the element with
            # maximum GCD
            gc = gcd(gcc, arr[i])
 
            # Update the value of g
            if (gc > g):
                g = gc
                s1 = i
 
        # Update GCD of prefix
        gcc = g
 
        # Place arr[s1] to it's
        # correct position
        arr[s1], arr[start + 1] = arr[start + 1], arr[s1]
 
        # Increment start for the
        # remaining elements
        start += 1
 
    # Print the rearranged array
    for i in range(N):
        print(arr[i], end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    # Given array arr[]
    arr = [ 1, 2, 3, 4 ]
 
    N = len(arr)
 
    # Function Call
    prefixGCD(arr, N)
 
# This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System;
class GFG{
 
// Function to find the maximum number
// obtainable from prefix GCDs
static void prefixGCD(int[] arr, int N)
{
     
  // Stores the GCD of the
  // longest prefix
  int gcc;
 
  // Sort the array
  Array.Sort(arr);
 
  // Reverse the array
  arr = reverse(arr);
 
  // GCD of a[0] is a[0]
  gcc = arr[0];
  int start = 0;
 
  // Iterate to place the
  // arr[start + 1] element
  // at it's correct position
  while (start < N - 1)
  {
    int g = 0, s1 = 0;
 
    for(int i = start + 1; i < N; i++)
    {
         
      // Find the element with
      // maximum GCD
      int gc = __gcd(gcc, arr[i]);
 
      // Update the value of g
      if (gc > g)
      {
        g = gc;
        s1 = i;
      }
    }
 
    // Update GCD of prefix
    gcc = g;
 
    // Place arr[s1] to it's
    // correct position
    arr = swap(arr, s1, start + 1);
 
    // Increment start for the
    // remaining elements
    start++;
  }
 
  // Print the rearranged array
  for(int i = 0; i < N; i++)
  {
    Console.Write(arr[i] + " ");
  }
}
   
static int __gcd(int a, int b) 
  return b == 0 ? a : __gcd(b, a % b);    
}
 
static int[] reverse(int[] a)
{
  int i, n = a.Length, t;
   
  for(i = 0; i < n / 2; i++)
  {
    t = a[i];
    a[i] = a[n - i - 1];
    a[n - i - 1] = t;
  }
  return a;
}
 
static int[] swap(int []arr, int i,
                             int j)
{
  int temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
  return arr;
}
     
//Driver Code
public static void Main()
{
     
  // Given array arr[]
  int[] arr = { 1, 2, 3, 4 };
 
  int N = arr.Length;
 
  // Function call
  prefixGCD(arr, N);
}
}
 
// This code is contributed by sanjoy_62
chevron_right

Output: 
4 2 3 1






 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :