Reaching a point using clockwise or anticlockwise movements
Given starting and ending position and a number N. Given that we are allowed to move in only four directions as shown in the image below. The directions of moves are U(), R
, D
and L
. We need to write a program to determine if starting from the given starting position we can reach the given end position in exactly N moves in moving about any direction(Clockwise or Anticlockwise).
Examples :
Input: start = U , end = L , N = 3 Output: Clockwise Explanation: Step 1: move clockwise to reach R Step 2: move clockwise to reach D Step 3: move clockwise to reach L So we reach from U to L in 3 steps moving in clockwise direction. Input: start = R , end = L , N = 3 Output: Not possible Explanation: It is not possible to start from R and end at L in 3 steps moving about in any direction. Input: start = D , end = R , N = 7 Output: Clockwise Explanation: Starting at D, we complete one complete clockwise round in 4 steps to reach D again, then it takes 3 step to reach R
The idea to solve this problem is to observe that we can complete one round in 4 steps by traveling in any direction (clockwise or anti-clockwise), so taking n%4 steps is equivalent to taking n steps from the starting point. Therefore n is reduced to n%4. Consider the values of ‘U’ as 0, ‘R’ as 1, ‘D’ as 2 and ‘L’ as 3. If the abs(value(a)-value(b)) is 2 and n is also 2, then we can move either in clockwise or anticlockwise direction to reach the end position from the start position. If moving k steps in clockwise direction take us to the end position from start position then we can say that the condition for clockwise move will be (value(a)+k)%4==value(b). Similarly, the condition for anticlockwise move will be (value(a)+k*3)%4==value(b) since taking k step from position a in clockwise direction is equivalent to taking (a + k*3)%4 steps in anticlockwise direction.
Below is the implementation of the above approach:
C++
// CPP program to determine if // starting from the starting // position we can reach the // end position in N moves // moving about any direction #include <bits/stdc++.h> using namespace std; // function that returns mark // up value of directions int value( char a) { if (a == 'U' ) return 0; if (a == 'R' ) return 1; if (a == 'D' ) return 2; if (a == 'L' ) return 3; } // function to print // the possible move void printMove( char a, char b, int n) { // mod with 4 as completing // 4 steps means completing // one single round n = n % 4; // when n is 2 and the // difference between moves is 2 if (n == 2 and abs (value(a) - value(b)) == 2) cout << "Clockwise or Anticlockwise" ; // anticlockwise condition else if ((value(a) + n * 3) % 4 == value(b)) cout << "Anticlockwise" ; // clockwise condition else if ((value(a) + n) % 4 == value(b)) cout << "Clockwise" ; else cout << "Not Possible" ; } // Driver Code int main() { char a = 'D' , b = 'R' ; int n = 7; printMove(a, b, n); return 0; } |
Java
// Java program to determine if // starting from the starting // position we can reach the // end position in N moves // moving about any direction class GFG { // function that returns mark // up value of directions static int value( char a) { if (a == 'U' ) return 0 ; if (a == 'R' ) return 1 ; if (a == 'D' ) return 2 ; if (a == 'L' ) return 3 ; return - 1 ; } // function to print // the possible move static void printMove( char a, char b, int n) { // mod with 4 as completing // 4 steps means completing // one single round n = n % 4 ; // when n is 2 and // the difference // between moves is 2 if (n == 2 && Math.abs(value(a) - value(b)) == 2 ) System.out.println( "Clockwise " + " or Anticlockwise" ); // anticlockwise condition else if ((value(a) + n * 3 ) % 4 == value(b)) System.out.println( "Anticlockwise" ); // clockwise condition else if ((value(a) + n) % 4 == value(b)) System.out.println( "Clockwise" ); else System.out.println( "Not Possible" ); } // Driver Code public static void main(String args[]) { char a = 'D' , b = 'R' ; int n = 7 ; printMove(a, b, n); } } // This code is contributed by Sam007 |
Python3
# python program to determine # if starting from the starting # position we can reach the end # position in N moves moving # any direction # function that returns mark # up value of directions def value(a): if (a = = 'U' ): return 0 if (a = = 'R' ): return 1 if (a = = 'D' ): return 2 if (a = = 'L' ): return 3 # function to print # the possible move def printMove(a, b, n): # mod with 4 as completing # 4 steps means completing # one single round n = n % 4 ; # when n is 2 and # the difference # between moves is 2 if (n = = 2 and abs (value(a) - value(b)) = = 2 ): print ( "Clockwise or Anticlockwise" ) # anticlockwise condition elif ((value(a) + n * 3 ) % 4 = = value(b)): print ( "Anticlockwise" ) # clockwise condition elif ((value(a) + n) % 4 = = value(b)): print ( "Clockwise" ) else : print ( "Not Possible" ) # Driver Code a = 'D' b = 'R' n = 7 printMove(a, b, n) # This code is contributed by Sam007. |
C#
// C# program to determine // if starting from the // starting position we // can reach the end position // in N moves moving about // any direction using System; class GFG { // function that returns mark // up value of directions static int value( char a) { if (a == 'U' ) return 0; if (a == 'R' ) return 1; if (a == 'D' ) return 2; if (a == 'L' ) return 3; return -1; } // function to print // the possible move static void printMove( char a, char b, int n) { // mod with 4 as completing // 4 steps means completing // one single round n = n % 4; // when n is 2 and // the difference // between moves is 2 if (n == 2 && Math.Abs(value(a) - value(b)) == 2) Console.Write( "Clockwise " + "or Anticlockwise" ); // anticlockwise condition else if ((value(a) + n * 3) % 4 == value(b)) Console.Write( "Anticlockwise" ); // clockwise condition else if ((value(a) + n) % 4 == value(b)) Console.WriteLine( "Clockwise" ); else Console.WriteLine( "Not Possible" ); } // Driver Code public static void Main() { char a = 'D' , b = 'R' ; int n = 7; printMove(a, b, n); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to determine // if starting from the // starting position we can // reach the end position in // N moves moving about // any direction // function that returns mark // up value of directions function value( $a ) { if ( $a == 'U' ) return 0; if ( $a == 'R' ) return 1; if ( $a == 'D' ) return 2; if ( $a == 'L' ) return 3; } // function to print // the possible move function printMove( $a , $b , $n ) { // mod with 4 as completing // 4 steps means completing // one single round $n = $n % 4; // when n is 2 and the // difference between // moves is 2 if ( $n == 2 and abs (value( $a ) - value( $b )) == 2) echo "Clockwise or Anticlockwise" ; // anticlockwise condition else if ((value( $a ) + $n * 3) % 4 == value( $b )) echo "Anticlockwise" ; // clockwise condition else if ((value( $a ) + $n ) % 4 == value( $b )) echo "Clockwise" ; else echo "Not Possible" ; } // Driver Code $a = 'D' ; $b = 'R' ; $n = 7; printMove( $a , $b , $n ); // This code is contributed ajit. ?> |
Javascript
<script> // JavaScript program to determine if // starting from the starting // position we can reach the // end position in N moves // moving about any direction // function that returns mark // up value of directions function value(a) { if (a == 'U' ) return 0; if (a == 'R' ) return 1; if (a == 'D' ) return 2; if (a == 'L' ) return 3; return -1; } // function to print // the possible move function printMove(a, b, n) { // mod with 4 as completing // 4 steps means completing // one single round n = n % 4; // when n is 2 and // the difference // between moves is 2 if (n == 2 && Math.abs(value(a) - value(b)) == 2) document.write( "Clockwise " + " or Anticlockwise" ); // anticlockwise condition else if ((value(a) + n * 3) % 4 == value(b)) document.write( "Anticlockwise" ); // clockwise condition else if ((value(a) + n) % 4 == value(b)) document.write( "Clockwise" ); else document.write( "Not Possible" ); } // Driver code let a = 'D' , b = 'R' ; let n = 7; printMove(a, b, n); // This code is contributed by code_hunt. </script> |
Output :
Clockwise
Time Complexity: O(1), as we are not using any loop or recursion to traverse.
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...