Ratio of mth and nth terms of an A. P. with given ratio of sums

Given that the ratio to sum of first m and n terms of an A.P. with first term ‘a’ and commond difference ‘d’ is m^2:n^2. The task is to find the ratio of mth and nth term of this A.P.

Examples:

Input: m = 3, n = 2
Output: 1.6667

Input: m = 5, n = 3
Output: 1.8

Approach:

Let the Sum of first m and n terms be denoted by Sm and Sn respectively.
Also, let the mth and nth term be denoted by tm and tn respectively.

Sm = (m * [ 2*a + (m-1)*d ])/2
Sn = (n * [ 2*a + (n-1)*d ])/2

Given: Sm / Sn = m^2 / n^2
Hence, ((m * [ 2*a + (m-1)*d ])/2) / ((n * [ 2*a + (n-1)*d ])/2) = m^2 / n^2
=> (2*a + (m-1)*d) / (2*a + (n-1)*d) = m / n



on cross multiplying and solving, we get
d = 2 * a

Hence, the mth and nth terms can be written as:

mth term = tm = a +(m-1)*d = a + (m-1)*(2*a)
nth term = tn = a +(n-1)*d = a + (n-1)*(2*a)

Hence the ratio will be:
tm / tn = (a + (m-1)*(2*a)) / (a + (n-1)*(2*a))
tm / tn = (2*m – 1) / (2*n – 1)

Below is the required implementation:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code to calculate ratio
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate ratio of mth and nth term
float CalculateRatio(float m, float n)
{
    // ratio will be tm/tn = (2*m - 1)/(2*n - 1)
    return (2 * m - 1) / (2 * n - 1);
}
  
// Driver code
int main()
{
    float m = 6, n = 2;
    cout << CalculateRatio(m, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to calculate ratio
import java.io.*;
  
class Nth {
      
// function to calculate ratio of mth and nth term
static float CalculateRatio(float m, float n)
{
    // ratio will be tm/tn = (2*m - 1)/(2*n - 1)
    return (2 * m - 1) / (2 * n - 1);
}
}
  
// Driver code
class GFG {
      
    public static void main (String[] args) {
    float m = 6, n = 2;
    Nth a=new Nth();
System.out.println(a.CalculateRatio(m, n));
  
    }
}
  
// this code is contributed by inder_verma..
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to calculate ratio 
  
# function to calculate ratio 
# of mth and nth term 
def CalculateRatio(m, n): 
  
    # ratio will be tm/tn = (2*m - 1)/(2*n - 1) 
    return (2 * m - 1) / (2 * n - 1); 
  
# Driver code 
if __name__=='__main__':
    m = 6;
    n = 2
    print (float(CalculateRatio(m, n))); 
  
# This code is contributed by 
# Shivi_Aggarwal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to calculate ratio
using System;
  
class Nth {
      
// function to calculate ratio of mth and nth term
float CalculateRatio(float m, float n)
{
    // ratio will be tm/tn = (2*m - 1)/(2*n - 1)
    return (2 * m - 1) / (2 * n - 1);
}
  
    // Driver code
    public static void Main () {
    float m = 6, n = 2;
    Nth a=new Nth();
Console.WriteLine(a.CalculateRatio(m, n));
  
    }
}
// this code is contributed by anuj_67.
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to calculate ratio
  
// function to calculate ratio 
// of mth and nth term
function CalculateRatio( $m, $n)
{
    // ratio will be tm/tn = (2*m - 1)/(2*n - 1)
    return (2 * $m - 1) / (2 * $n - 1);
}
  
// Driver code
  
$m = 6; $n = 2;
echo CalculateRatio($m, $n);
  
// This code is contributed 
// by inder_verma
?>
chevron_right

Output:
3.66667

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : inderDuMCA, vt_m, Shivi_Aggarwal

Article Tags :
Practice Tags :