Rank the array according to rightmost set bit and least set bits
Given an array arr[] of N integers, the task is to replace each element of Array with their rank according to Rightmost-Set Bit (RSB) in descending manner, If the RSB is the same for two numbers then choose the one which has the least number of set bits if the set bits of two numbers are same then choose the number who comes first in the array.
Examples:
Input: arr[] = {4, 5, 6, 7, 8}
Output: 2 4 3 5 1
Explanation: Then rank of elements is given by sorted descending of RSB.
Rank(8) = 1 as Rsb of 8(1000) is 8 and setbit count is 1.
Rank(4) = 2 as RSB of 4(0100) is 4 and setbit count is 1.
Rank(6) = 3 as RSB of 6(0110) is 2 and setbit count is 2.
Rank(5) = 4 as RSB of 5(0101) is 1 and setbit count is 2.
Rank(7) = 5 as Rsb of 7(0111) is 1 and setbit count is 3.
So, the answer will be { 2, 4, 3, 5, 1 }.Input: arr[] = {5, 10, 15, 32}
Output: 3 2 4 1
Naive Approach: The naive approach is to find the rank of each element by comparing the RSB of that element with other elements and incrementing the rank by 1 whenever a greater value of RSB is encountered.
Time Complexity: O(N*N).
Auxiliary Space: O(N).
Efficient Approach: To optimize the above naive approach find ranks of elements and then assign the rank to the elements using a comparator. Using a comparator, the elements can be sorted based on data members. For instance, here the elements will be sorted based on the RSB and number of set bits.
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Class for pair class Pair { public : int index; int rsb; int setbit; // Constructor Pair( int index, int rsb, int setbit) :index(index),rsb(rsb),setbit(setbit) { } }; // Comparator for sorting based on RSB bool operator<( const Pair& a, const Pair& b) { if (a.rsb > b.rsb) return false ; else if (a.rsb < b.rsb) return true ; else if (a.setbit < b.setbit) return false ; else if (b.setbit < a.setbit) return true ; else if (a.index < b.index) return false ; else return true ; } // Function to rearrange the elements // according to Rightmpost set bits void rearrange( int ar[], int n) { // Creating priority queue from // sorting according to // rightmost set bit. priority_queue<Pair> pq; // For creating object of each element // so that it can be sorted for ( int i = 0; i < n; i++) { // To calculate the rightmost // set bit in O(1) int k = (ar[i] & -ar[i]); // Creating a pair object // with rsb and index int setbit = __builtin_popcount(ar[i]); // Inserting the element // in priorityqueue pq.push(Pair(i, k, setbit)); } int rank = 1; // Popping the element of queue // to get respective rank. while (!pq.empty()) { Pair p = pq.top(); pq.pop(); ar[p.index] = rank++; } } // Driver code int main() { int arr[] = { 4, 5, 6, 7, 8 }; // To store the length of array int N = sizeof (arr) / sizeof (arr[0]);; // To call the rearrange function rearrange(arr, N); for ( int i = 0; i < N; i++) cout<<arr[i]<< " " ; return 0; } // This code is contributed by Pushpesh raj. |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; // Class for pair class Pair { int index; int rsb; int setbit; // Constructor Pair( int index, int rsb, int setbit) { this .index = index; this .rsb = rsb; this .setbit = setbit; } } // Comparator for sorting based on RSB class pair_sort implements Comparator<Pair> { // Used for sorting in descending order // of rightmost set bit public int compare(Pair a, Pair b) { if (a.rsb > b.rsb) return - 1 ; else if (a.rsb < b.rsb) return 1 ; else if (a.setbit < b.setbit) return - 1 ; else if (b.setbit < a.setbit) return 1 ; else if (a.index < b.index) return - 1 ; else return 1 ; } } // Class to implement the solution logic class GFG { // Function to rearrange the elements // according to Rightmpost set bits void rearrange( int ar[], int n) { // Creating priority queue from // sorting according to // rightmost set bit. PriorityQueue<Pair> pq = new PriorityQueue<Pair>( new pair_sort()); // For creating object of each element // so that it can be sorted for ( int i = 0 ; i < n; i++) { // To calculate the rightmost // set bit in O(1) int k = (ar[i] & -ar[i]); // Creating a pair object // with rsb and index int setbit = Integer.bitCount(ar[i]); Pair p = new Pair(i, k, setbit); // Inserting the element // in priorityqueue pq.add(p); } int rank = 1 ; // Popping the element of queue // to get respective rank. while (!pq.isEmpty()) { Pair p = pq.poll(); ar[p.index] = rank++; } } // Driver code public static void main(String[] args) throws java.lang.Exception { int arr[] = { 4 , 5 , 6 , 7 , 8 }; // Creating an object of class GFG ob = new GFG(); // To store the length of array int N = arr.length; // To call the rearrange function ob.rearrange(arr, N); for ( int i = 0 ; i < N; i++) System.out.print(arr[i] + " " ); } } |
Python3
# Python program for the above approach import heapq # pair class class Pair: def __init__( self , index, rsb, setbit): self .index = index self .rsb = rsb self .setbit = setbit class Soln: # Function to rearrange the elements # according to Rightmpost set bits def rearrng( self , arr: list ) - > list : n = len (arr) pq = [] # Creating a pair object # with rsb and index for i in range (n): # To calculate the rightmost # set bit in O(1) k = (arr[i] & - arr[i]) # Creating a pair object # with rsb and index setbit = bin (arr[i]).count( '1' ) p = Pair(i, k, setbit) #Inserting the element #in priorityqueue heapq.heappush(pq, ( - p.rsb, p.setbit, p.index)) rank = 1 # Popping the element of queue # to get respective rank. while pq: p = heapq.heappop(pq) arr[p[ 2 ]] = rank rank + = 1 return arr # Driver code arr = [ 4 , 5 , 6 , 7 , 8 ] # Creating an object of class ob = Soln() # To call the rearrange function res = ob.rearrng(arr) print (res) |
Javascript
// Define Priority Queuefor JavaScript as there is no pre-defined in JavaScript class PriorityQueue { constructor() { this .heap = []; this .comparator = (a, b) => { if (a.rsb > b.rsb) { return 1; } else if (a.rsb < b.rsb) { return -1; } else if (a.setbit > b.setbit) { return 1; } else if (a.setbit < b.setbit) { return -1; } else if (a.index > b.index) { return 1; } else { return -1; } }; } // To insert into queue enqueue(value) { this .heap.push(value); let index = this .heap.length - 1; while (index > 0) { let parentIndex = Math.floor((index - 1) / 2); if ( this .comparator( this .heap[parentIndex], this .heap[index]) <= 0) { break ; } [ this .heap[parentIndex], this .heap[index]] = [ this .heap[index], this .heap[parentIndex], ]; index = parentIndex; } } // To pop from queue dequeue() { if ( this .isEmpty()) { return undefined; } if ( this .size() === 1) { return this .heap.shift(); } const minValue = this .heap[0]; this .heap[0] = this .heap.pop(); let index = 0; let leftChildIndex = 2 * index + 1; let rightChildIndex = 2 * index + 2; while ( (leftChildIndex < this .size() && this .comparator( this .heap[leftChildIndex], this .heap[index]) < 0) || (rightChildIndex < this .size() && this .comparator( this .heap[rightChildIndex], this .heap[index]) < 0) ) { let smallerIndex = rightChildIndex < this .size() && this .comparator( this .heap[rightChildIndex], this .heap[leftChildIndex]) < 0 ? rightChildIndex : leftChildIndex; [ this .heap[index], this .heap[smallerIndex]] = [ this .heap[smallerIndex], this .heap[index], ]; index = smallerIndex; leftChildIndex = 2 * index + 1; rightChildIndex = 2 * index + 2; } return minValue; } // Queue is empty or not isEmpty() { return this .size() === 0; } size() { return this .heap.length; } peek() { if ( this .isEmpty()) { return undefined; } return this .heap[0]; } } // Class for pair class Pair { constructor(index, rsb, setbit) { // Constructor this .index = index; this .rsb = rsb; this .setbit = setbit; } } // Function to rearrange the elements // according to Rightmpost set bits function rearrange(arr) { // Creating priority queue from // sorting according to // rightmost set bit. const n = arr.length; const pq = []; // For creating object of each element // so that it can be sorted for (let i = 0; i < n; i++) { // To calculate the rightmost // set bit in O(1) const k = (arr[i] & -arr[i]); // Creating a pair object // with rsb and index const setbit = arr[i].toString(2).replace(/0/g, '' ).length; // Inserting the element // in priorityqueue pq.push( new Pair(i, k, setbit)); } // sorting based on RSB pq.sort((a, b) => { if (a.rsb > b.rsb) { return -1; } else if (a.rsb < b.rsb) { return 1; } else if (a.setbit < b.setbit) { return -1; } else if (a.setbit > b.setbit) { return 1; } else if (a.index < b.index) { return -1; } else { return 1; } }); for (let i = 0; i < n; i++) { arr[pq[i].index] = i + 1; } return arr; } // Driver Code const arr = [4, 5, 6, 7, 8]; // To call the rearrange function const res = rearrange(arr); console.log(res.join( ' ' )); |
C#
// C# program for the above approach using System; using System.Collections.Generic; // Class for pair class Pair : IComparable<Pair> { public int index; public int rsb; public int setbit; // Constructor public Pair( int index, int rsb, int setbit) { this .index = index; this .rsb = rsb; this .setbit = setbit; } // Comparator for sorting based on RSB public int CompareTo(Pair other) { if ( this .rsb > other.rsb) return -1; else if ( this .rsb < other.rsb) return 1; else if ( this .setbit < other.setbit) return -1; else if (other.setbit < this .setbit) return 1; else if ( this .index < other.index) return -1; else return 1; } } // Class to implement the solution logic class GFG { // Function to rearrange the elements // according to Rightmpost set bits public void rearrange( int [] ar, int n) { // Creating priority queue from // sorting according to // rightmost set bit. SortedSet<Pair> pq = new SortedSet<Pair>(); // For creating object of each element // so that it can be sorted for ( int i = 0; i < n; i++) { // To calculate the rightmost // set bit in O(1) int k = (ar[i] & -ar[i]); // Creating a pair object // with rsb and index int setbit = Convert.ToString(ar[i], 2).Length - Convert.ToString(ar[i], 2).Replace( "1" , "" ).Length; Pair p = new Pair(i, k, setbit); // Inserting the element // in priorityqueue pq.Add(p); } int rank = 1; // Popping the element of queue // to get respective rank. foreach (Pair p in pq) { ar[p.index] = rank++; } } // Driver code public static void Main( string [] args) { int [] arr = { 4, 5, 6, 7, 8 }; // Creating an object of class GFG ob = new GFG(); // To store the length of array int N = arr.Length; // To call the rearrange function ob.rearrange(arr, N); for ( int i = 0; i < N; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by Aman Kumar. |
2 4 3 5 1
Time Complexity: O(N*log(N))
Auxiliary Space: O(N).
Please Login to comment...