Range sum query using Sparse Table

We have an array arr[]. We need to find the sum of all the elements in the range L and R where 0 <= L <= R <= n-1. Consider a situation when there are many range queries.

Examples:

Input : 3 7 2 5 8 9
        query(0, 5)
        query(3, 5)
        query(2, 4)
Output : 34
         22
         15

Note : array is 0 based indexed
       and queries too.



Since there are no updates/modifications, we use Sparse table to answer queries efficiently. In sparse table, we break queries in powers of 2.

Suppose we are asked to compute sum of 
elements from arr[i] to arr[i+12]. 
We do the following:

// Use sum of 8 (or 23) elements 
table[i][3] = sum(arr[i], arr[i + 1], ...
                               arr[i + 7]).

// Use sum of 4 elements
table[i+8][2] = sum(arr[i+8], arr[i+9], ..
                                arr[i+11]).

// Use sum of single element
table[i + 12][0] = sum(arr[i + 12]).

Our result is sum of above values.

Notice that it took only 4 actions to compute result over subarray of size 13.

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the sum in a given
// range in an array using sparse table.
#include <bits/stdc++.h>
using namespace std;
  
// Because 2^17 is larger than 10^5
const int k = 16;
  
// Maximum value of array
const int N = 1e5;
  
// k + 1 because we need to access
// table[r][k]
long long table[N][k + 1];
  
// it builds sparse table.
void buildSparseTable(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        table[i][0] = arr[i];
  
    for (int j = 1; j <= k; j++)
        for (int i = 0; i <= n - (1 << j); i++)
            table[i][j] = table[i][j - 1] +
               table[i + (1 << (j - 1))][j - 1];
}
  
// Returns the sum of the elements in the range
// L and R.
long long query(int L, int R)
{
    // boundaries of next query, 0-indexed
    long long answer = 0;
    for (int j = k; j >= 0; j--) {
        if (L + (1 << j) - 1 <= R) {
            answer = answer + table[L][j];
  
            // instead of having L', we
            // increment L directly
            L += 1 << j;
        }
    }
    return answer;
}
  
// Driver program.
int main()
{
    int arr[] = { 3, 7, 2, 5, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    buildSparseTable(arr, n);
  
    cout << query(0, 5) << endl;
    cout << query(3, 5) << endl;
    cout << query(2, 4) << endl;
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum 
// in a given range in an array 
// using sparse table.
class GFG
{
      
// Because 2^17 is larger than 10^5
static int k = 16;
  
// Maximum value of array
static int N = 100000;
  
// k + 1 because we need
// to access table[r][k]
static long table[][] = new long[N][k + 1];
  
// it builds sparse table.
static void buildSparseTable(int arr[],
                             int n)
{
    for (int i = 0; i < n; i++)
        table[i][0] = arr[i];
  
    for (int j = 1; j <= k; j++)
        for (int i = 0; i <= n - (1 << j); i++)
            table[i][j] = table[i][j - 1] +
            table[i + (1 << (j - 1))][j - 1];
}
  
// Returns the sum of the 
// elements in the range L and R.
static long query(int L, int R)
{
    // boundaries of next query,
    // 0-indexed
    long answer = 0;
    for (int j = k; j >= 0; j--) 
    {
        if (L + (1 << j) - 1 <= R) 
        {
            answer = answer + table[L][j];
  
            // instead of having L', we
            // increment L directly
            L += 1 << j;
        }
    }
    return answer;
}
  
// Driver Code
public static void main(String args[])
{
    int arr[] = { 3, 7, 2, 5, 8, 9 };
    int n = arr.length;
  
    buildSparseTable(arr, n);
  
    System.out.println(query(0, 5));
    System.out.println(query(3, 5));
    System.out.println(query(2, 4));
}
}
  
// This code is contributed 
// by Kirti_Mangal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the 
// sum in a given range
// in an array using
// sparse table.
using System;
  
class GFG
{
    // Because 2^17 is
    // larger than 10^5
    static int k = 16;
      
    // Maximum value 
    // of array
    static int N = 100000;
      
    // k + 1 because we 
    // need to access table[r,k]
    static long [,]table = 
           new long[N, k + 1];
      
    // it builds sparse table.
    static void buildSparseTable(int []arr, 
                                 int n)
    {
        for (int i = 0; i < n; i++)
            table[i, 0] = arr[i];
      
        for (int j = 1; j <= k; j++)
            for (int i = 0;     
                     i <= n - (1 << j); i++)
                table[i, j] = table[i, j - 1] +
                table[i + (1 << (j - 1)), j - 1];
    }     
      
    // Returns the sum of the
    // elements in the range
    // L and R.
    static long query(int L, int R)
    {
        // boundaries of next 
        // query, 0-indexed
        long answer = 0;
        for (int j = k; j >= 0; j--) 
        {
            if (L + (1 << j) - 1 <= R) 
            {
                answer = answer + 
                         table[L, j];
      
                // instead of having 
                // L', we increment 
                // L directly
                L += 1 << j;
            }
        }
        return answer;
    }
      
    // Driver Code
    static void Main()
    {
        int []arr = new int[]{3, 7, 2, 
                              5, 8, 9};
        int n = arr.Length;
      
        buildSparseTable(arr, n);
      
        Console.WriteLine(query(0, 5));
        Console.WriteLine(query(3, 5));
        Console.WriteLine(query(2, 4));
    }
}
  
// This code is contributed by 
// Manish Shaw(manishshaw1)
chevron_right

Output:

34
22
15

This algorithm for answering queries with Sparse Table works in O(k), which is O(log(n)), because we choose minimal k such that 2^k+1 > n.

Time complexity of sparse table construction : Outer loop runs in O(k), inner loop runs in O(n). Thus, in total we get O(n * k) = O(n * log(n))




pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : manishshaw1, Kirti_Mangal



Article Tags :
Practice Tags :