Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Range Query on array whose each element is XOR of index value and previous element

  • Difficulty Level : Hard
  • Last Updated : 28 Apr, 2021

Consider an arr[] which can be defined as: 
 

You are given Q queries of the form [l, r]. The task is to output the value of arr[l] ⊕ arr[l+1] ⊕ ….. ⊕ arr[r-1] ⊕ arr[r] for each query.
Examples : 
 

Input : q = 3
        q1 = { 2, 4 }
        q2 = { 2, 8 }
        q3 = { 5, 9 }
Output : 7
         9
         15

The beginning of the array with constraint look like: 
arr[] = { 0, 1, 3, 0, 4, 1, 7, 0, 8, 1, 11, .... }
For q1, 3 ⊕ 0 ⊕ 4 = 7
For q2, 3 ⊕ 0 ⊕ 4 ⊕ 1 ⊕ 7 ⊕ 0 ⊕ 8 = 9
For q3, 1 ⊕ 7 ⊕ 0 ⊕ 8 ⊕ 1 = 15

 

Let’s observe arr[] 
 

arr[0] = 0
arr[1] = 1
arr[2] = 1 ⊕ 2
arr[3] = 1 ⊕ 2 ⊕ 3
arr[4] = 1 ⊕ 2 ⊕ 3 ⊕ 4
arr[5] = 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5
....

Let’s make another array, say brr[], where brr[i] = arr[0] ⊕ arr[1] ⊕ arr[2] ⊕ ….. ⊕ arr[i]. 
brr[i] = arr[0] ⊕ arr[1] ⊕ arr[2] ⊕ … ⊕ arr[i-1] ⊕ arr[i] = brr[j] ⊕ arr[j+1] ⊕ arr[j+2] ⊕ ….. ⊕ arr[i], for any 0 <= j <= i. 
So, arr[l] ⊕ arr[l+1] ⊕ ….. ⊕ arr[r] = brr[l-1] ⊕ brr[r].
Now, let’s observe brr[]: 
 

brr[1] = 1
brr[2] = 2
brr[3] = 1 ⊕ 3
brr[4] = 2 ⊕ 4
brr[5] = 1 ⊕ 3 ⊕ 5
brr[6] = 2 ⊕ 4 ⊕ 6
brr[7] = 1 ⊕ 3 ⊕ 5 ⊕ 7
brr[8] = 2 ⊕ 4 ⊕ 6 ⊕ 8

It’s easy to observe that in odd indexes brr[i] = 1 ⊕ 3 ⊕ 5 ⊕ …. ⊕ i and for even indexes brr[i] = 2 ⊕ 4 ⊕ 6 ⊕ …. ⊕ i.
For even indexes there are numbers from 1 to i/2 multipliedby 2, that means bits are moved to left by 1, so, brr[i] = 2 ⊕ 4 ⊕ 6 ⊕ …. ⊕ i = (1 ⊕ 2 ⊕ 3 ⊕ ….. ⊕ i/2) * 2. 
And for odd indexes there are numbers from 0 to (i – 1)/2 multiplied by 2 and plus 1. That means bits are moved to left by 1, and last bit is made 1. So, brr[i] = 1 ⊕ 3 ⊕ 5 ⊕ …. ⊕ i = (0 ⊕ 1 ⊕ 2 ⊕ …. ⊕ (i – 1)/2) * 2 + x. 
x is 1 ⊕ 1 ⊕ 1 ⊕ ….. ⊕ 1 “ones” are repeated (i – 1)/2 + 1 times. So, if (i-1)/2 + 1 is odd then x = 1 else x = 0.
Now, calculation of 1 ⊕ 2 ⊕ 3 ⊕ …. ⊕ x. 
Let’s prove that (4K) ⊕ (4K + 1) ⊕ (4K + 2) ⊕ (4K + 3) = 0 for 0 <= k. 
 

                 bitmask(K)00=4K
      xorsum     bitmask(K)01=4K+1
                 bitmask(K)10=4K+2
                 bitmask(K)11=4k+3
               ---------------------
                  000000000000=0

So as 0 ⊕ Y = Y then 1 ⊕ 2 ⊕ 3 ⊕ … ⊕ x = (floor(x/4) x 4) ⊕ … ⊕ x here are maximum 3 numbers so we can calculate in O(1).
Below is the implementation of this approach:
 

C++




// CPP Program to solve range query on array
// whose each element is XOR of index value
// and previous element.
#include <bits/stdc++.h>
using namespace std;
 
// function return derived formula value.
int fun(int x)
{
    int y = (x / 4) * 4;
 
    // finding xor value of range [y...x]
    int ans = 0;
    for (int i = y; i <= x; i++)
        ans ^= i;
 
    return ans;
}
 
// function to solve query for l and r.
int query(int x)
{
    // if l or r is 0.
    if (x == 0)
        return 0;
 
    int k = (x + 1) / 2;
 
    // finding x is divisible by 2 or not.
    return (x %= 2) ? 2 * fun(k) : ((fun(k - 1) * 2) ^ (k & 1));
}
 
void allQueries(int q, int l[], int r[])
{
    for (int i = 0; i < q; i++)
        cout << (query(r[i]) ^ query(l[i] - 1)) << endl;
}
 
// Driven Program
int main()
{
    int q = 3;
    int l[] = { 2, 2, 5 };
    int r[] = { 4, 8, 9 };
 
    allQueries(q, l, r);
    return 0;
}

Java




// Java Program to solve range query on array
// whose each element is XOR of index value
// and previous element.
 
import java.io.*;
 
class GFG {
     
    // function return derived formula value.
    static int fun(int x)
    {
        int y = (x / 4) * 4;
     
        // finding xor value of range [y...x]
        int ans = 0;
         
        for (int i = y; i <= x; i++)
            ans ^= i;
     
        return ans;
    }
     
    // function to solve query for l and r.
    static int query(int x)
    {
         
        // if l or r is 0.
        if (x == 0)
            return 0;
     
        int k = (x + 1) / 2;
     
        // finding x is divisible by 2 or not.
        return ((x %= 2) != 0) ? 2 * fun(k) :
                   ((fun(k - 1) * 2) ^ (k & 1));
    }
     
    static void allQueries(int q, int l[], int r[])
    {
        for (int i = 0; i < q; i++)
            System.out.println((query(r[i]) ^
                               query(l[i] - 1))) ;
    }
     
    // Driven Program
    public static void main (String[] args) {
         
        int q = 3;
        int []l = { 2, 2, 5 };
        int []r = { 4, 8, 9 };
     
        allQueries(q, l, r);
         
    }
}
 
// This code is contributed by vt_m.

Python3




# Python3 Program to solve range query
# on array whose each element is XOR of
# index value and previous element.
 
# function return derived formula value.
def fun(x):
    y = (x // 4) * 4
     
    # finding xor value of range [y...x]
    ans = 0
    for i in range(y, x + 1):
        ans ^= i
    return ans
 
# function to solve query for l and r.
def query(x):
     
    # if l or r is 0.
    if (x == 0):
        return 0
 
    k = (x + 1) // 2
 
    # finding x is divisible by 2 or not.
    if x % 2 == 0:
        return((fun(k - 1) * 2) ^ (k & 1))
    else:
        return(2 * fun(k))
 
def allQueries(q, l, r):
    for i in range(q):
        print(query(r[i]) ^ query(l[i] - 1))
         
# Driver Code
q = 3
l = [ 2, 2, 5 ]
r = [ 4, 8, 9 ]
 
allQueries(q, l, r)
 
# This code is contributed
# by sahishelangia

C#




// C# Program to solve range query on array
// whose each element is XOR of index value
// and previous element.
using System;
 
class GFG {
     
 
    // function return derived formula value.
    static int fun(int x)
    {
        int y = (x / 4) * 4;
     
        // finding xor value of range [y...x]
        int ans = 0;
        for (int i = y; i <= x; i++)
            ans ^= i;
     
        return ans;
    }
     
    // function to solve query for l and r.
    static int query(int x)
    {
        // if l or r is 0.
        if (x == 0)
            return 0;
     
        int k = (x + 1) / 2;
     
        // finding x is divisible by 2 or not.
        return ((x %= 2)!=0) ? 2 * fun(k) :
                   ((fun(k - 1) * 2) ^ (k & 1));
    }
     
    static void allQueries(int q, int []l, int []r)
    {
        for (int i = 0; i < q; i++)
            Console.WriteLine((query(r[i])
                              ^ query(l[i] - 1))) ;
    }
     
    // Driven Program
    public static void Main ()
    {
        int q = 3;
        int []l = { 2, 2, 5 };
        int []r = { 4, 8, 9 };
     
        allQueries(q, l, r);
         
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP Program to solve range
// query on array whose each
// element is XOR of index
// value and previous element.
 
// function return derived
// formula value.
function fun($x)
{
    $y = ((int)($x / 4) * 4);
 
    // finding xor value
    // of range [y...x]
    $ans = 0;
    for ($i = $y; $i <= $x; $i++)
        $ans ^= $i;
 
    return $ans;
}
 
// function to solve
// query for l and r.
function query($x)
{
    // if l or r is 0.
    if ($x == 0)
        return 0;
 
    $k = (int)(($x + 1) / 2);
 
    // finding x is divisible
    // by 2 or not.
    return ($x %= 2) ? 2 * fun($k) :
     ((fun($k - 1) * 2) ^ ($k & 1));
}
 
function allQueries($q, $l, $r)
{
    for ($i = 0; $i < $q; $i++)
        echo (query($r[$i]) ^
              query($l[$i] - 1)) , "\n";
}
 
// Driver Code
$q = 3;
$l = array( 2, 2, 5 );
$r = array ( 4, 8, 9 );
 
allQueries($q, $l, $r);
 
// This code is contributed by ajit
?>

Javascript




<script>
// Javascript Program to solve range query on array
// whose each element is XOR of index value
 
// function return derived formula value.
function fun(x)
{
    let y = parseInt(x / 4) * 4;
 
    // finding xor value of range [y...x]
    let ans = 0;
    for (let i = y; i <= x; i++)
        ans ^= i;
 
    return ans;
}
 
// function to solve query for l and r.
function query(x)
{
    // if l or r is 0.
    if (x == 0)
        return 0;
 
    let k = parseInt((x + 1) / 2);
 
    // finding x is divisible by 2 or not.
    return (x %= 2) ? 2 * fun(k) : ((fun(k - 1) * 2) ^ (k & 1));
}
 
function allQueries(q, l, r)
{
    for (let i = 0; i < q; i++)
        document.write((query(r[i]) ^ query(l[i] - 1)) + "<br>");
}
 
// Driven Program
    let q = 3;
    let l = [ 2, 2, 5 ];
    let r = [ 4, 8, 9 ];
 
    allQueries(q, l, r);
 
</script>

Output : 
 

0
2
0

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!