Related Articles

# Range Queries to count elements lying in a given Range : MO’s Algorithm

• Last Updated : 17 Jun, 2020

Given an array arr[] of N elements and two integers A to B, the task is to answer Q queries each having two integers L and R. For each query, find the number of elements in the subarray arr[L…R] which lies within the range A to B (inclusive).

Examples:

Input: arr[] = {7, 3, 9, 13, 5, 4}, A = 4, B = 7
query = {1, 5}
Output: 2
Explanation:
Only 5 and 4 lies within 4 to 7
in the subarray {3, 9, 13, 5, 4}
Therefore, the count of such elements is 2.

Input: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}, A = 1, B = 5
query = {3, 5}
Output: 3
Explanation:
All the elements 3, 4 and 5 lies within
the range 1 to 5 in the subarray {3, 4, 5}.
Therefore, the count of such elements is 3.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Prerequisites: MO’s algorithm, SQRT Decomposition

Approach: The idea is to use MO’s algorithm to pre-process all queries so that result of one query can be used in the next query. Below is the illustration of the steps:

• Group the queries into mutiple chunks where each chunk contains the values of starting range in (0 to √N – 1), (√N to 2x√N – 1) and so on. Sort the queries within a chunk in incresing order of R.
• Process all queries one by one in a way that every query uses result computed in the previous query.
• Maintain the frequency array that will count the frequency of arr[i] as they appear in the range [L, R].

For example: arr[] = [3, 4, 6, 2, 7, 1], L = 0, R = 4 and A = 1, B = 6
Initially frequency array is initialized to 0 i.e freq[]=[0….0]
Step 1: Add arr and increment its frequency as freq[arr]++ i.e freq++
and freq[]=[0, 0, 0, 1, 0, 0, 0, 0]

Step 2: Add arr and increment freq[arr]++ i.e freq++
and freq[]=[0, 0, 0, 1, 1, 0, 0, 0]

Step 3: Add arr and increment freq[arr]++ i.e freq++
and freq[]=[0, 0, 0, 1, 1, 0, 1, 0]

Step 4: Add arr and increment freq[arr]++ i.e freq++
and freq[]=[0, 0, 1, 1, 1, 0, 1, 0]

Step 5: Add arr and increment freq[arr]++ i.e freq++
and freq[]=[0, 0, 1, 1, 1, 0, 1, 1]

Step 6: Now we need to find the numbers of elements between A and B.

Step 7: The answer is equal to To calculate the sum in step 7, we cannot do iteration because that would lead to O(N) time complexity per query so we will use sqrt decomposition technique to find the sum whose time complexity is O(√N) per query.

Below is the implementation of the above approach:

## C++

 // C++ implementation to find the // values in the range A to B // in a subarray of L to R  #include   using namespace std;  #define MAX 100001#define SQRSIZE 400  // Variable to represent block size.// This is made global so compare()// of sort can use it.int query_blk_sz;  // Structure to represent a// query rangestruct Query {    int L;    int R;};  // Frequency array// to keep count of elementsint frequency[MAX];  // Array which contains the frequency// of a particular blockint blocks[SQRSIZE];  // Block sizeint blk_sz;  // Function used to sort all queries// so that all queries of the same// block are arranged together and// within a block, queries are sorted// in increasing order of R values.bool compare(Query x, Query y){    if (x.L / query_blk_sz != y.L / query_blk_sz)        return x.L / query_blk_sz < y.L / query_blk_sz;      return x.R < y.R;}  // Function used to get the block// number of current a[i] i.e indint getblocknumber(int ind){    return (ind) / blk_sz;}  // Function to get the answer// of range [0, k] which uses the// sqrt decompostion techniqueint getans(int A, int B){    int ans = 0;    int left_blk, right_blk;    left_blk = getblocknumber(A);    right_blk = getblocknumber(B);      // If left block is equal to    // rigth block then we can traverse    // that block    if (left_blk == right_blk) {        for (int i = A; i <= B; i++)            ans += frequency[i];    }    else {        // Traversing first block in        // range        for (int i = A; i < (left_blk + 1) * blk_sz; i++)            ans += frequency[i];          // Traversing completely overlapped        // blocks in range        for (int i = left_blk + 1;            i < right_blk; i++)            ans += blocks[i];          // Traversing last block in range        for (int i = right_blk * blk_sz;            i <= B; i++)            ans += frequency[i];    }    return ans;}  void add(int ind, int a[]){    // Increment the frequency of a[ind]    // in the frequency array    frequency[a[ind]]++;      // Get the block number of a[ind]    // to update the result in blocks    int block_num = getblocknumber(a[ind]);      blocks[block_num]++;}void remove(int ind, int a[]){    // Decrement the frequency of    // a[ind] in the frequency array    frequency[a[ind]]--;      // Get the block number of a[ind]    // to update the result in blocks    int block_num = getblocknumber(a[ind]);      blocks[block_num]--;}void queryResults(int a[], int n,                Query q[], int m, int A, int B){      // Initialize the block size    // for queries    query_blk_sz = sqrt(m);      // Sort all queries so that queries    // of same blocks are arranged    // together.    sort(q, q + m, compare);      // Initialize current L,    // current R and current result    int currL = 0, currR = 0;      for (int i = 0; i < m; i++) {          // L and R values of the        // current range          int L = q[i].L, R = q[i].R;          // Add Elements of current        // range        while (currR <= R) {            add(currR, a);            currR++;        }        while (currL > L) {            add(currL - 1, a);            currL--;        }          // Remove element of previous        // range        while (currR > R + 1)          {            remove(currR - 1, a);            currR--;        }        while (currL < L) {            remove(currL, a);            currL++;        }        printf("%d\n", getans(A, B));    }}  // Driver codeint main(){      int arr[] = { 2, 0, 3, 1, 4, 2, 5, 11 };    int N = sizeof(arr) / sizeof(arr);      int A = 1, B = 5;    blk_sz = sqrt(N);    Query Q[] = { { 0, 2 }, { 0, 3 }, { 5, 7 } };      int M = sizeof(Q) / sizeof(Q);      // Answer the queries    queryResults(arr, N, Q, M, A, B);    return 0;}
Output:
2
3
2


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up