Skip to content
Related Articles

Related Articles

Random sampling in numpy | sample() function

View Discussion
Improve Article
Save Article
  • Last Updated : 26 Feb, 2019
View Discussion
Improve Article
Save Article

numpy.random.sample() is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0).

Syntax : numpy.random.sample(size=None)

Parameters :
size : [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

Return : Array of random floats in the interval [0.0, 1.0). or a single such random float if size not provided.

Code #1 :




# Python program explaining
# numpy.random.sample() function
  
# importing numpy
import numpy as geek
  
# output random value
out_val = geek.random.sample()
print ("Output random value : ", out_val) 

Output :

Output random value :  0.9261509680895836

 

Code #2 :




# Python program explaining
# numpy.random.sample() function
  
# importing numpy
import numpy as geek
  
  
# output array
out_arr = geek.random.sample(size =(3, 3))
print ("Output 2D Array filled with random floats : ", out_arr) 

Output :

Output 2D Array filled with random floats :  [[ 0.75908777  0.88295677  0.60979136]
 [ 0.68157065  0.75100312  0.08321613]
 [ 0.8360331   0.64808891  0.14731635]]

 
Code #3 :




# Python program explaining
# numpy.random.sample() function
  
# importing numpy
import numpy as geek
  
# output array
out_arr = geek.random.sample((2, 2, 3))
print ("Output 3D Array filled with random floats : ", out_arr) 

Output :

Output 3D Array filled with random floats :  [[[ 0.3073475   0.75709465  0.86934712]
  [ 0.21953745  0.48138292  0.30686482]]

 [[ 0.48925625  0.60222083  0.14403257]
  [ 0.87030919  0.87298872  0.2222136 ]]]

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!