Radix Sort

The lower bound for Comparison based sorting algorithm (Merge Sort, Heap Sort, Quick-Sort .. etc) is Ω(nLogn), i.e., they cannot do better than nLogn. 

Counting sort is a linear time sorting algorithm that sort in O(n+k) time when elements are in the range from 1 to k.

What if the elements are in the range from 1 to n2
We can’t use counting sort because counting sort will take O(n2) which is worse than comparison-based sorting algorithms. Can we sort such an array in linear time? 

Radix Sort is the answer. The idea of Radix Sort is to do digit by digit sort starting from least significant digit to most significant digit. Radix sort uses counting sort as a subroutine to sort.

The Radix Sort Algorithm 



  1. Do following for each digit i where i varies from least significant digit to the most significant digit. 
    • Sort input array using counting sort (or any stable sort) according to the i’th digit.

Example:

Original, unsorted list:
170, 45, 75, 90, 802, 24, 2, 66

Sorting by least significant digit (1s place) gives: 
[*Notice that we keep 802 before 2, because 802 occurred 
before 2 in the original list, and similarly for pairs 
170 & 90 and 45 & 75.]

Sorting by next digit (10s place) gives: 
[*Notice that 802 again comes before 2 as 802 comes before 
2 in the previous list.]

802, 2, 24, 45, 66, 170, 75, 90

Sorting by the most significant digit (100s place) gives:
2, 24, 45, 66, 75, 90, 170, 802

What is the running time of Radix Sort? 
Let there be d digits in input integers. Radix Sort takes O(d*(n+b)) time where b is the base for representing numbers, for example, for the decimal system, b is 10. What is the value of d? If k is the maximum possible value, then d would be O(logb(k)). So overall time complexity is O((n+b) * logb(k)). Which looks more than the time complexity of comparison-based sorting algorithms for a large k. Let us first limit k. Let k <= nc where c is a constant. In that case, the complexity becomes O(nLogb(n)). But it still doesn’t beat comparison-based sorting algorithms. 
What if we make the value of b larger?. What should be the value of b to make the time complexity linear? If we set b as n, we get the time complexity as O(n). In other words, we can sort an array of integers with a range from 1 to nc if the numbers are represented in base n (or every digit takes log2(n) bits). 

Is Radix Sort preferable to Comparison based sorting algorithms like Quick-Sort? 
If we have log2n bits for every digit, the running time of Radix appears to be better than Quick Sort for a wide range of input numbers. The constant factors hidden in asymptotic notation are higher for Radix Sort and Quick-Sort uses hardware caches more effectively. Also, Radix sort uses counting sort as a subroutine and counting sort takes extra space to sort numbers.
 

Implementation of Radix Sort 

Following is a simple implementation of Radix Sort. For simplicity, the value of d is assumed to be 10. We recommend you to see Counting Sort for details of countSort() function in below code.
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of Radix Sort
#include <iostream>
using namespace std;
 
// A utility function to get maximum value in arr[]
int getMax(int arr[], int n)
{
    int mx = arr[0];
    for (int i = 1; i < n; i++)
        if (arr[i] > mx)
            mx = arr[i];
    return mx;
}
 
// A function to do counting sort of arr[] according to
// the digit represented by exp.
void countSort(int arr[], int n, int exp)
{
    int output[n]; // output array
    int i, count[10] = { 0 };
 
    // Store count of occurrences in count[]
    for (i = 0; i < n; i++)
        count[(arr[i] / exp) % 10]++;
 
    // Change count[i] so that count[i] now contains actual
    //  position of this digit in output[]
    for (i = 1; i < 10; i++)
        count[i] += count[i - 1];
 
    // Build the output array
    for (i = n - 1; i >= 0; i--) {
        output[count[(arr[i] / exp) % 10] - 1] = arr[i];
        count[(arr[i] / exp) % 10]--;
    }
 
    // Copy the output array to arr[], so that arr[] now
    // contains sorted numbers according to current digit
    for (i = 0; i < n; i++)
        arr[i] = output[i];
}
 
// The main function to that sorts arr[] of size n using
// Radix Sort
void radixsort(int arr[], int n)
{
    // Find the maximum number to know number of digits
    int m = getMax(arr, n);
 
    // Do counting sort for every digit. Note that instead
    // of passing digit number, exp is passed. exp is 10^i
    // where i is current digit number
    for (int exp = 1; m / exp > 0; exp *= 10)
        countSort(arr, n, exp);
}
 
// A utility function to print an array
void print(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver Code
int main()
{
    int arr[] = { 170, 45, 75, 90, 802, 24, 2, 66 };
    int n = sizeof(arr) / sizeof(arr[0]);
     
      // Function Call
      radixsort(arr, n);
    print(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Radix sort Java implementation
import java.io.*;
import java.util.*;
 
class Radix {
 
    // A utility function to get maximum value in arr[]
    static int getMax(int arr[], int n)
    {
        int mx = arr[0];
        for (int i = 1; i < n; i++)
            if (arr[i] > mx)
                mx = arr[i];
        return mx;
    }
 
    // A function to do counting sort of arr[] according to
    // the digit represented by exp.
    static void countSort(int arr[], int n, int exp)
    {
        int output[] = new int[n]; // output array
        int i;
        int count[] = new int[10];
        Arrays.fill(count, 0);
 
        // Store count of occurrences in count[]
        for (i = 0; i < n; i++)
            count[(arr[i] / exp) % 10]++;
 
        // Change count[i] so that count[i] now contains
        // actual position of this digit in output[]
        for (i = 1; i < 10; i++)
            count[i] += count[i - 1];
 
        // Build the output array
        for (i = n - 1; i >= 0; i--) {
            output[count[(arr[i] / exp) % 10] - 1] = arr[i];
            count[(arr[i] / exp) % 10]--;
        }
 
        // Copy the output array to arr[], so that arr[] now
        // contains sorted numbers according to curent digit
        for (i = 0; i < n; i++)
            arr[i] = output[i];
    }
 
    // The main function to that sorts arr[] of size n using
    // Radix Sort
    static void radixsort(int arr[], int n)
    {
        // Find the maximum number to know number of digits
        int m = getMax(arr, n);
 
        // Do counting sort for every digit. Note that
        // instead of passing digit number, exp is passed.
        // exp is 10^i where i is current digit number
        for (int exp = 1; m / exp > 0; exp *= 10)
            countSort(arr, n, exp);
    }
 
    // A utility function to print an array
    static void print(int arr[], int n)
    {
        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
    }
 
    /*Driver Code*/
    public static void main(String[] args)
    {
        int arr[] = { 170, 45, 75, 90, 802, 24, 2, 66 };
        int n = arr.length;
           
          // Function Call
        radixsort(arr, n);
        print(arr, n);
    }
}
/* This code is contributed by Devesh Agrawal */

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program for implementation of Radix Sort
# A function to do counting sort of arr[] according to
# the digit represented by exp.
 
def countingSort(arr, exp1):
 
    n = len(arr)
 
    # The output array elements that will have sorted arr
    output = [0] * (n)
 
    # initialize count array as 0
    count = [0] * (10)
 
    # Store count of occurrences in count[]
    for i in range(0, n):
        index = (arr[i] / exp1)
        count[int(index % 10)] += 1
 
    # Change count[i] so that count[i] now contains actual
    # position of this digit in output array
    for i in range(1, 10):
        count[i] += count[i - 1]
 
    # Build the output array
    i = n - 1
    while i >= 0:
        index = (arr[i] / exp1)
        output[count[int(index % 10)] - 1] = arr[i]
        count[int(index % 10)] -= 1
        i -= 1
 
    # Copying the output array to arr[],
    # so that arr now contains sorted numbers
    i = 0
    for i in range(0, len(arr)):
        arr[i] = output[i]
 
# Method to do Radix Sort
def radixSort(arr):
 
    # Find the maximum number to know number of digits
    max1 = max(arr)
 
    # Do counting sort for every digit. Note that instead
    # of passing digit number, exp is passed. exp is 10^i
    # where i is current digit number
    exp = 1
    while max1 / exp > 0:
        countingSort(arr, exp)
        exp *= 10
 
 
# Driver code
arr = [170, 45, 75, 90, 802, 24, 2, 66]
 
# Function Call
radixSort(arr)
 
for i in range(len(arr)):
    print(arr[i])
 
# This code is contributed by Mohit Kumra
# Edited by Patrick Gallagher

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of Radix Sort
using System;
 
class GFG {
    public static int getMax(int[] arr, int n)
    {
        int mx = arr[0];
        for (int i = 1; i < n; i++)
            if (arr[i] > mx)
                mx = arr[i];
        return mx;
    }
 
    // A function to do counting sort of arr[] according to
    // the digit represented by exp.
    public static void countSort(int[] arr, int n, int exp)
    {
        int[] output = new int[n]; // output array
        int i;
        int[] count = new int[10];
 
        // initializing all elements of count to 0
        for (i = 0; i < 10; i++)
            count[i] = 0;
 
        // Store count of occurrences in count[]
        for (i = 0; i < n; i++)
            count[(arr[i] / exp) % 10]++;
 
        // Change count[i] so that count[i] now contains
        // actual
        //  position of this digit in output[]
        for (i = 1; i < 10; i++)
            count[i] += count[i - 1];
 
        // Build the output array
        for (i = n - 1; i >= 0; i--) {
            output[count[(arr[i] / exp) % 10] - 1] = arr[i];
            count[(arr[i] / exp) % 10]--;
        }
 
        // Copy the output array to arr[], so that arr[] now
        // contains sorted numbers according to current
        // digit
        for (i = 0; i < n; i++)
            arr[i] = output[i];
    }
 
    // The main function to that sorts arr[] of size n using
    // Radix Sort
    public static void radixsort(int[] arr, int n)
    {
        // Find the maximum number to know number of digits
        int m = getMax(arr, n);
 
        // Do counting sort for every digit. Note that
        // instead of passing digit number, exp is passed.
        // exp is 10^i where i is current digit number
        for (int exp = 1; m / exp > 0; exp *= 10)
            countSort(arr, n, exp);
    }
 
    // A utility function to print an array
    public static void print(int[] arr, int n)
    {
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 170, 45, 75, 90, 802, 24, 2, 66 };
        int n = arr.Length;
 
        // Function Call
        radixsort(arr, n);
        print(arr, n);
    }
 
    // This code is contributed by DrRoot_
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of Radix Sort
 
 
// A function to do counting sort of arr[]
// according to the digit represented by exp.
function countSort(&$arr, $n, $exp)
{
    $output = array_fill(0, $n, 0); // output array
    $count = array_fill(0, 10, 0);
 
    // Store count of occurrences in count[]
    for ($i = 0; $i < $n; $i++)
        $count[ ($arr[$i] / $exp) % 10 ]++;
 
    // Change count[i] so that count[i]
    // now contains actual position of
    // this digit in output[]
    for ($i = 1; $i < 10; $i++)
        $count[$i] += $count[$i - 1];
 
    // Build the output array
    for ($i = $n - 1; $i >= 0; $i--)
    {
        $output[$count[ ($arr[$i] /
                         $exp) % 10 ] - 1] = $arr[$i];
        $count[ ($arr[$i] / $exp) % 10 ]--;
    }
 
    // Copy the output array to arr[], so
    // that arr[] now contains sorted numbers
    // according to current digit
    for ($i = 0; $i < $n; $i++)
        $arr[$i] = $output[$i];
}
 
// The main function to that sorts arr[]
// of size n using Radix Sort
function radixsort(&$arr, $n)
{
     
    // Find the maximum number to know
    // number of digits
    $m = max($arr);
 
    // Do counting sort for every digit. Note
    // that instead of passing digit number,
    // exp is passed. exp is 10^i where i is
    // current digit number
    for ($exp = 1; $m / $exp > 0; $exp *= 10)
        countSort($arr, $n, $exp);
}
 
// A utility function to print an array
function PrintArray(&$arr,$n)
{
    for ($i = 0; $i < $n; $i++)
        echo $arr[$i] . " ";
}
 
// Driver Code
$arr = array(170, 45, 75, 90, 802, 24, 2, 66);
$n = count($arr);
 
// Function Call
radixsort($arr, $n);
PrintArray($arr, $n);
 
// This code is contributed by rathbhupendra
?>

chevron_right


Output

2 24 45 66 75 90 170 802 

https://youtu.be/nu4gDuFabIM
 

Snapshots: 
 

scene00577

 

scene00649
scene00793
scene01009
scene01225

Quiz on Radix Sort

Other Sorting Algorithms on GeeksforGeeks/GeeksQuiz: 
 

References: 
http://en.wikipedia.org/wiki/Radix_sort 
http://alg12.wikischolars.columbia.edu/file/view/RADIX.pdf 
MIT Video Lecture 
Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Improved By : DrRoot_, rathbhupendra, m212076

Article Tags :
Practice Tags :


45


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.