Skip to content
Related Articles

Related Articles

Radius of a circle having area equal to the sum of area of the circles having given radii
  • Difficulty Level : Hard
  • Last Updated : 22 Jan, 2021

Given two integers r1 and r2, representing the radius of two circles, the task is to find the radius of the circle having area equal to the sum of the area of the two circles having given radii.

Examples:

Input:
r1 = 8
r2 = 6
Output:
10
Explanation:
Area of circle with radius 8 = 201.061929 
Area of a circle with radius 6 = 113.097335
Area of a circle with radius 10 = 314.159265

Input:
r1 = 2
r2 = 2
Output:
2.82843

Approach: Follow the steps below to solve the problem:



  1. Calculate area of the first circle is a1 = 3.14 * r1 * r1.
  2. Calculate area of the second circle is a2 = 3.14 * r2 * r2.
  3. Therefore, area of the third circle is a1 + a2.
  4. Radius of the third circle is sqrt(a3 / 3.14)

Below is the implementation of the following approach.

C++14

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate radius of the circle
// having area equal to sum of the area of
// two circles with given radii
double findRadius(double r1, double r2)
{
    double a1, a2, a3, r3;
 
    // Area of first circle
    a1 = 3.14 * r1 * r1;
 
    // Area of second circle
    a2 = 3.14 * r2 * r2;
 
    // Area of third circle
    a3 = a1 + a2;
 
    // Radius of third circle
    r3 = sqrt(a3 / 3.14);
 
    return r3;
}
 
// Driver Code
int main()
{
    // Given radius
    double r1 = 8, r2 = 6;
 
    // Prints the radius of
    // the required circle
    cout << findRadius(r1, r2);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
   
// Function to calculate radius of the circle
// having area equal to sum of the area of
// two circles with given radii
static double findRadius(double r1, double r2)
{
    double a1, a2, a3, r3;
 
    // Area of first circle
    a1 = 3.14 * r1 * r1;
 
    // Area of second circle
    a2 = 3.14 * r2 * r2;
 
    // Area of third circle
    a3 = a1 + a2;
 
    // Radius of third circle
    r3 = Math.sqrt(a3 / 3.14);
    return r3;
}
    
// Driver code
public static void main(String[] args)
{
   
    // Given radius
    double r1 = 8, r2 = 6;
 
    // Prints the radius of
    // the required circle
    System.out.println((int)findRadius(r1, r2));
}
}
 
// This code is contributed by code_hunt.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to implement
# the above approach
 
# Function to calculate radius of the circle
# having area equal to sum of the area of
# two circles with given radii
def findRadius(r1, r2):
    a1, a2, a3, r3 = 0, 0, 0, 0;
 
    # Area of first circle
    a1 = 3.14 * r1 * r1;
 
    # Area of second circle
    a2 = 3.14 * r2 * r2;
 
    # Area of third circle
    a3 = a1 + a2;
 
    # Radius of third circle
    r3 = ((a3 / 3.14)**(1/2));
    return r3;
 
# Driver code
if __name__ == '__main__':
 
    # Given radius
    r1 = 8; r2 = 6;
 
    # Prints the radius of
    # the required circle
    print(int(findRadius(r1, r2)));
 
# This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
 
class GFG
{
 
// Function to calculate radius of the circle
// having area equal to sum of the area of
// two circles with given radii
static double findRadius(double r1, double r2)
{
    double a1, a2, a3, r3;
 
    // Area of first circle
    a1 = 3.14 * r1 * r1;
 
    // Area of second circle
    a2 = 3.14 * r2 * r2;
 
    // Area of third circle
    a3 = a1 + a2;
 
    // Radius of third circle
    r3 = Math.Sqrt(a3 / 3.14);
    return r3;
}
 
  // Driver code
  static void Main()
  {
     
    // Given radius
    double r1 = 8, r2 = 6;
 
    // Prints the radius of
    // the required circle
    Console.WriteLine((int)findRadius(r1, r2));
  }
}
 
// This code is contributed by susmitakundugoaldanga

chevron_right


 
 

Output: 

10

 

Time Complexity: O(1)
Space Complexity: O(1) 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :