Queue Operations
The queue is an abstract data type which is defined by following structure and operations.
Queue is structured as an ordered collection of items which are added at one end called rear end, and other end called front end.
The queue operations are as follows:
- create
- enqueue
- dequeue
- isEmpty
- isFull
- size
1) create : Creates and initializes new queue that is empty, t does not require any parameter and returns an empty queue.
2) enqueue: Add a new element to the rear of queue . It requires the element to be added and returns nothing.
3) dequeue: removes the elements from the front of queue. It does not require any parameters and returns the deleted item.
4) isEmpty: Check the whether the queue is empty or not. It does not require any parameter and returns a Boolean value.
Given N integers, the task is to insert those elements in the queue. Also, given M integers, the task is to find the frequency of each number in the Queue.
Examples:
Input:
N = 8
1 2 3 4 5 2 3 1 (N integers)
M = 5
1 3 2 9 10 (M integers)
Output:
2 2 2 -1 -1Explanation:
After inserting 1, 2, 3, 4, 5, 2, 3, 1 into the queue, frequency of 1 is 2, 3 is 2, 2 is 2, 9 is -1 and 10 is -1 (since, 9 and 10 is not there in the queue).Input:
N = 5
5 2 2 4 5 (N integers)
M = 5
2 3 4 5 1 (M integers)
Output:
2 -1 1 2 -1
Approach: The given problem can be solved by using a simple queue. The idea is to insert N integers one by one into the queue and then check the frequency of M integers. Separate functions will be created to perform both operations. Follow the steps below to solve the problem.
- Create a queue and push all given integers into the queue.
- After pushing all the elements into the queue create another function for counting the frequency of given M elements one by one.
- Take a variable cntFrequency to keep track of frequency of current element.
- Pop all the elements from queue till its size and each time check if current element in queue is equal to element for which we are checking for frequency.
– if both are equal, increment cntFrequency by 1
– else, do nothing. - Push the current element back to the queue so that for next case queue will not get disturbed.
- Print the frequency of each element found.
Below is the implementation of the above approach:
C++
// C++ Program to implement above approach #include <bits/stdc++.h> using namespace std; // Helper class Geeks to implement // insert() and findFrequency() class Geeks { // Function to insert // element into the queue public : void insert(queue< int > &q, int k) { // adding N integers into the Queue q.push(k); } // Function to find frequency of an element // return the frequency of k int findFrequency(queue< int > &q, int k) { // to count frequency of elements int cntFrequency = 0; // storing size of queue in a variable int h = q.size(); // running loop until size becomes zero while (h) { h = h - 1; // storing and deleting // first element from queue int x = q.front(); q.pop(); // comparing if it's equal to integer K // that belongs to M if (x == k) { // increment count cntFrequency += 1; } // add element back to queue because // we also want N integers q.push(x); } // return the count return cntFrequency; } }; // Driver code int main() { queue< int > q; int N = 8; int a[N] = {1, 2, 3, 4, 5, 2, 3, 1}; int M = 5; int b[M] = {1, 3, 2, 9, 10}; // Invoking object of Geeks class Geeks obj; for ( int i = 0; i < N; i++) { // calling insert() // to add elements in queue obj.insert(q, a[i]); } for ( int i = 0; i < M; i++) { // calling findFrequency() int f = obj.findFrequency(q, b[i]); if (f != 0) { // variable f // will have final frequency cout << f << " " ; } else { cout << ( "-1" ) << " " ; } } } // This code is contributed by adityamaharshi21. |
Java
// Java Program to implement above approach import java.io.*; import java.util.*; class GFG { // Driver code public static void main(String[] args) { // Declaring Queue Queue<Integer> q = new LinkedList<>(); int N = 8 ; int [] a = new int [] { 1 , 2 , 3 , 4 , 5 , 2 , 3 , 1 }; int M = 5 ; int [] b = new int [] { 1 , 3 , 2 , 9 , 10 }; // Invoking object of Geeks class Geeks obj = new Geeks(); for ( int i = 0 ; i < N; i++) { // calling insert() // to add elements in queue obj.insert(q, a[i]); } for ( int i = 0 ; i < M; i++) { // calling findFrequency() int f = obj.findFrequency(q, b[i]); if (f != 0 ) { // variable f // will have final frequency System.out.print(f + " " ); } else { System.out.print( "-1" + " " ); } } } } // Helper class Geeks to implement // insert() and findFrequency() class Geeks { // Function to insert // element into the queue static void insert(Queue<Integer> q, int k) { // adding N integers into the Queue q.add(k); } // Function to find frequency of an element // return the frequency of k static int findFrequency(Queue<Integer> q, int k) { // to count frequency of elements int cntFrequency = 0 ; // storing size of queue in a variable int size = q.size(); // running loop until size becomes zero while (size-- != 0 ) { // storing and deleting // first element from queue int x = q.poll(); // comparing if it's equal to integer K // that belongs to M if (x == k) { // increment count cntFrequency++; } // add element back to queue because // we also want N integers q.add(x); } // return the count return cntFrequency; } } |
Python3
# Python Program to implement above approach import collections # Helper class Geeks to implement # insert() and findFrequency() class Geeks: # Function to insert # element into the queue def insert( self , q, k): # adding N integers into the Queue q.append(k) # Function to find frequency of an element # return the frequency of k def findFrequency( self , q, k): # to count frequency of elements cntFrequency = 0 # storing size of queue in a variable size = len (q) # running loop until size becomes zero while (size): size = size - 1 # storing and deleting # first element from queue x = q.popleft() # comparing if it's equal to integer K # that belongs to M if (x = = k): # increment count cntFrequency + = 1 # add element back to queue because # we also want N integers q.append(x) # return the count return cntFrequency # Declaring Queue q = collections.deque() N = 8 a = [ 1 , 2 , 3 , 4 , 5 , 2 , 3 , 1 ] M = 5 b = [ 1 , 3 , 2 , 9 , 10 ] # Invoking object of Geeks class obj = Geeks() for i in range (N): # calling insert() # to add elements in queue obj.insert(q, a[i]) for i in range (M): # calling findFrequency() f = obj.findFrequency(q, b[i]) if (f ! = 0 ): # variable f # will have final frequency print (f, end = " " ) else : print ( "-1" , end = " " ) print ( " " ) # This code is contributed by gfgking. |
C#
// C# Program to implement above approach using System; using System.Collections.Generic; public class GFG { // Helper class Geeks to implement // insert() and findFrequency() public class Geeks { // Function to insert // element into the queue public void insert(Queue< int > q, int k) { // adding N integers into the Queue q.Enqueue(k); } // Function to find frequency of an element // return the frequency of k public int findFrequency(Queue< int > q, int k) { // to count frequency of elements int cntFrequency = 0; // storing size of queue in a variable int size = q.Count; // running loop until size becomes zero while (size-- != 0) { // storing and deleting // first element from queue int x = q.Peek(); q.Dequeue(); // comparing if it's equal to integer K // that belongs to M if (x == k) { // increment count cntFrequency++; } // add element back to queue because // we also want N integers q.Enqueue(x); } // return the count return cntFrequency; } } // Driver code public static void Main() { // Declaring Queue Queue< int > q = new Queue< int >(); int N = 8; int [] a = new int [] { 1, 2, 3, 4, 5, 2, 3, 1 }; int M = 5; int [] b = new int [] { 1, 3, 2, 9, 10 }; // Invoking object of Geeks class Geeks obj = new Geeks(); for ( int i = 0; i < N; i++) { // calling insert() // to add elements in queue obj.insert(q, a[i]); } for ( int i = 0; i < M; i++) { // calling findFrequency() int f = obj.findFrequency(q, b[i]); if (f != 0) { // variable f // will have final frequency Console.Write(f + " " ); } else { Console.Write( "-1" + " " ); } } } } // This code is contributed by SURENDRA_GANGWAR. |
Javascript
// JS Program to implement above approach // Helper class Geeks to implement // insert() and findFrequency() class Geeks { // Function to insert // element into the queue insert(q, k) { // adding N integers into the Queue q.unshift(k); } // Function to find frequency of an element // return the frequency of k findFrequency(q, k) { // to count frequency of elements let cntFrequency = 0; // storing size of queue in a variable let size = q.length; // running loop until size becomes zero while (size) { size = size - 1; // storing and deleting // first element from queue let x = q.pop(); // comparing if it's equal to integer K // that belongs to M if (x == k) { // increment count cntFrequency += 1; } // add element back to queue because // we also want N integers q.unshift(x); } // return the count return cntFrequency; } } // Driver code let q = new Array; let N = 8; let a = [1, 2, 3, 4, 5, 2, 3, 1]; let M = 5; let b = [1, 3, 2, 9, 10]; // Invoking object of Geeks class let obj = new Geeks; for (let i = 0; i < N; i++) { // calling insert() // to add elements in queue obj.insert(q, a[i]); } for (let i = 0; i < M; i++) { // calling findFrequency() f = obj.findFrequency(q, b[i]); if (f != 0) { // variable f // will have final frequency console.log(f); } else { console.log( "-1" ); } } // This code is contributed by adityamaharshi21. |
2 2 2 -1 -1
Time Complexity: O(N*M)
Auxiliary Space: O(N)
Please Login to comment...