Queries to update a given index and find gcd in range
Given an array arr[] of N integers and queries Q. Queries are of two types:
- Update a given index ind by X.
- Find the gcd of the elements in the index range [L, R].
Examples:
Input: arr[] = {1, 3, 6, 9, 9, 11}
Type 2 query: L = 1, R = 3
Type 1 query: ind = 1, X = 10
Type 2 query: L = 1, R = 3
Output:
3
1Input: arr[] = {1, 2, 4, 9, 3}
Type 2 query: L = 1, R = 2
Type 1 query: ind = 2, X = 7
Type 2 query: L = 1, R = 2
Type 2 query: L = 3, R = 4
Output:
2
1
3
Approach: The following problem can be solved using the Segment Tree.
A segment tree can be used to do preprocessing and query in moderate time. With the segment tree, preprocessing time is O(n) and the time for the GCD query is O(Logn). The extra space required is O(n) to store the segment tree.
Representation of Segment trees
- Leaf Nodes are the elements of the input array.
- Each internal node represents the GCD of all leaves under it.
Array representation of the tree is used to represent Segment Trees i.e., for each node at index i
- The left child is at index 2*i+1
- Right child at 2*i+2 and the parent is at floor((i-1)/2).
Construction of Segment Tree from the given array
- Begin with a segment arr[0 . . . n-1] and keep dividing into two halves. Every time we divide the current segment into two halves (if it has not yet become a segment of length 1), then call the same procedure on both halves, and for each such segment, we store the GCD value in a segment tree node.
- All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a Full Binary Tree (every node has 0 or two children) because we always divide segments into two halves at every level.
- Since the constructed tree is always a full binary tree with n leaves, there will be n-1 internal nodes. So the total number of nodes will be 2*n – 1.
- Like tree construction and query operations, the update can also be done recursively.
- We are given an index that needs to be updated. Let diff be the value to be added. We start from the root of the segment tree and add diff to all nodes which have given index in their range. If a node doesn’t have a given index in its range, we don’t make any changes to that node.



Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // A utility function to get the // middle index from corner indexes int getMid( int s, int e) { return (s + (e - s) / 2); } // A recursive function to get the gcd of values in given range // of the array. The following are parameters for this function // st --> Pointer to segment tree // si --> Index of current node in the segment tree. Initially // 0 is passed as root is always at index 0 // ss & se --> Starting and ending indexes of the segment represented // by current node, i.e., st[si] // qs & qe --> Starting and ending indexes of query range int getGcdUtil( int * st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range // then return the gcd of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return __gcd(getGcdUtil(st, ss, mid, qs, qe, 2 * si + 1), getGcdUtil(st, mid + 1, se, qs, qe, 2 * si + 2)); } // A recursive function to update the nodes which have the given // index in their range. The following are parameters // st, si, ss and se are same as getSumUtil() // i --> index of the element to be updated. This index is // in the input array. // diff --> Value to be added to all nodes which have i in range void updateValueUtil( int * st, int ss, int se, int i, int new_val, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return ; // If only single element is left in the range if (ss == se) { st[si] = new_val; return ; } int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, new_val, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, new_val, 2 * si + 2); st[si] = __gcd(st[2*si + 1], st[2*si + 2]); } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue( int arr[], int * st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { cout << "Invalid Input" ; return ; } // Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, new_val, 0); } // Function to return the sum of elements in range // from index qs (query start) to qe (query end) // It mainly uses getSumUtil() int getGcd( int * st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { cout << "Invalid Input" ; return -1; } return getGcdUtil(st, 0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructGcdUtil( int arr[], int ss, int se, int * st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one element then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = __gcd(constructGcdUtil(arr, ss, mid, st, si * 2 + 1), constructGcdUtil(arr, mid + 1, se, st, si * 2 + 2)); return st[si]; } // Function to construct segment tree from given array. This function // allocates memory for segment tree and calls constructSTUtil() to // fill the allocated memory int * constructGcd( int arr[], int n) { // Allocate memory for the segment tree // Height of segment tree int x = ( int )( ceil (log2(n))); // Maximum size of segment tree int max_size = 2 * ( int ) pow (2, x) - 1; // Allocate memory int * st = new int [max_size]; // Fill the allocated memory st constructGcdUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } // Driver code int main() { int arr[] = { 1, 3, 6, 9, 9, 11 }; int n = sizeof (arr) / sizeof (arr[0]); // Build segment tree from given array int * st = constructGcd(arr, n); // Print GCD of values in array from index 1 to 3 cout << getGcd(st, n, 1, 3) << endl; // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, st, n, 1, 10); // Find GCD after the value is updated cout << getGcd(st, n, 1, 3) << endl; return 0; } |
Java
// Java implementation of the approach class GFG { // segment tree static int st[]; // Recursive function to return gcd of a and b static int __gcd( int a, int b) { if (b == 0 ) return a; return __gcd(b, a % b); } // A utility function to get the // middle index from corner indexes static int getMid( int s, int e) { return (s + (e - s) / 2 ); } // A recursive function to get the gcd of values in given range // of the array. The following are parameters for this function // st --> Pointer to segment tree // si --> Index of current node in the segment tree. Initially // 0 is passed as root is always at index 0 // ss & se --> Starting and ending indexes of the segment represented // by current node, i.e., st[si] // qs & qe --> Starting and ending indexes of query range static int getGcdUtil( int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range // then return the gcd of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0 ; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return __gcd(getGcdUtil( ss, mid, qs, qe, 2 * si + 1 ), getGcdUtil( mid + 1 , se, qs, qe, 2 * si + 2 )); } // A recursive function to update the nodes which have the given // index in their range. The following are parameters // si, ss and se are same as getSumUtil() // i --> index of the element to be updated. This index is // in the input array. // diff --> Value to be added to all nodes which have i in range static void updateValueUtil( int ss, int se, int i, int new_val, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return ; // If only single element is left in the range if (ss == se) { st[si] = new_val; return ; } int mid = getMid(ss, se); updateValueUtil(ss, mid, i, new_val, 2 * si + 1 ); updateValueUtil(mid + 1 , se, i, new_val, 2 * si + 2 ); st[si] = __gcd(st[ 2 *si + 1 ], st[ 2 *si + 2 ]); } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree static void updateValue( int arr[], int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1 ) { System.out.println( "Invalid Input" ); return ; } // Update the values of nodes in segment tree updateValueUtil( 0 , n - 1 , i, new_val, 0 ); } // Function to return the sum of elements in range // from index qs (query start) to qe (query end) // It mainly uses getSumUtil() static int getGcd( int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { System.out.println( "Invalid Input" ); return - 1 ; } return getGcdUtil( 0 , n - 1 , qs, qe, 0 ); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st static int constructGcdUtil( int arr[], int ss, int se, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one element then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1 ), constructGcdUtil(arr, mid + 1 , se, si * 2 + 2 )); return st[si]; } // Function to construct segment tree from given array. This function // allocates memory for segment tree and calls constructSTUtil() to // fill the allocated memory static void constructGcd( int arr[], int n) { // Allocate memory for the segment tree // Height of segment tree int x = ( int )(Math.ceil(Math.log(n)/Math.log( 2 ))); // Maximum size of segment tree int max_size = 2 * ( int )Math.pow( 2 , x) - 1 ; // Allocate memory st = new int [max_size]; // Fill the allocated memory st constructGcdUtil(arr, 0 , n - 1 , 0 ); } // Driver code public static void main(String args[]) { int arr[] = { 1 , 3 , 6 , 9 , 9 , 11 }; int n = arr.length; // Build segment tree from given array constructGcd(arr, n); // Print GCD of values in array from index 1 to 3 System.out.println( getGcd( n, 1 , 3 ) ); // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, n, 1 , 10 ); // Find GCD after the value is updated System.out.println( getGcd( n, 1 , 3 ) ); } } // This code is constructed by Arnab Kundu |
Python3
# Python 3 implementation of the approach from math import gcd,ceil,log2, pow # A utility function to get the # middle index from corner indexes def getMid(s, e): return (s + int ((e - s) / 2 )) # A recursive function to get the gcd of values in given range # of the array. The following are parameters for this function # st --> Pointer to segment tree # si --> Index of current node in the segment tree. Initially # 0 is passed as root is always at index 0 # ss & se --> Starting and ending indexes of the segment represented # by current node, i.e., st[si] # qs & qe --> Starting and ending indexes of query range def getGcdUtil(st,ss,se,qs,qe,si): # If segment of this node is a part of given range # then return the gcd of the segment if (qs < = ss and qe > = se): return st[si] # If segment of this node is outside the given range if (se < qs or ss > qe): return 0 # If a part of this segment overlaps with the given range mid = getMid(ss, se) return gcd(getGcdUtil(st, ss, mid, qs, qe, 2 * si + 1 ), getGcdUtil(st, mid + 1 , se, qs, qe, 2 * si + 2 )) # A recursive function to update the nodes which have the given # index in their range. The following are parameters # st, si, ss and se are same as getSumUtil() # i --> index of the element to be updated. This index is # in the input array. # diff --> Value to be added to all nodes which have i in range def updateValueUtil(st,ss,se,i,new_val,si): # Base Case: If the input index lies outside the range of # this segment if (i < ss or i > se): return if (ss = = se): st[si] = new_val return # If the input index is in range of this node, then update # the value of the node and its children mid = getMid(ss, se) updateValueUtil(st, ss, mid, i, new_val, 2 * si + 1 ) updateValueUtil(st, mid + 1 , se, i, new_val, 2 * si + 2 ) st[si] = gcd(st[ 2 * si + 1 ], st[ 2 * si + 2 ]) # The function to update a value in input array and segment tree. # It uses updateValueUtil() to update the value in segment tree def updateValue(arr, st, n, i, new_val): # Check for erroneous input index if (i < 0 or i > n - 1 ): print ( "Invalid Input" ) return # Update the values of nodes in segment tree updateValueUtil(st, 0 , n - 1 , i, new_val, 0 ) # Function to return the sum of elements in range # from index qs (query start) to qe (query end) # It mainly uses getSumUtil() def getGcd(st,n,qs,qe): # Check for erroneous input values if (qs < 0 or qe > n - 1 or qs > qe): cout << "Invalid Input" return - 1 return getGcdUtil(st, 0 , n - 1 , qs, qe, 0 ) # A recursive function that constructs Segment Tree for array[ss..se]. # si is index of current node in segment tree st def constructGcdUtil(arr, ss,se, st, si): # If there is one element in array, store it in current node of # segment tree and return if (ss = = se): st[si] = arr[ss] return arr[ss] # If there are more than one element then recur for left and # right subtrees and store the sum of values in this node mid = getMid(ss, se) st[si] = gcd(constructGcdUtil(arr, ss, mid, st, si * 2 + 1 ), constructGcdUtil(arr, mid + 1 , se, st, si * 2 + 2 )) return st[si] # Function to construct segment tree from given array. This function # allocates memory for segment tree and calls constructSTUtil() to # fill the allocated memory def constructGcd(arr, n): # Allocate memory for the segment tree # Height of segment tree x = int (ceil(log2(n))) # Maximum size of segment tree max_size = 2 * int ( pow ( 2 , x) - 1 ) # Allocate memory st = [ 0 for i in range (max_size)] # Fill the allocated memory st constructGcdUtil(arr, 0 , n - 1 , st, 0 ) # Return the constructed segment tree return st # Driver code if __name__ = = '__main__' : arr = [ 1 , 3 , 6 , 9 , 9 , 11 ] n = len (arr) # Build segment tree from given array st = constructGcd(arr, n) # Print GCD of values in array from index 1 to 3 print (getGcd(st, n, 1 , 3 )) # Update: set arr[1] = 10 and update corresponding # segment tree nodes updateValue(arr, st, n, 1 , 10 ) # Find GCD after the value is updated print (getGcd(st, n, 1 , 3 )) # This code is contributed by # SURENDRA_GANGWAR |
C#
// C# implementation of the approach. using System; class GFG { // segment tree static int []st; // Recursive function to return gcd of a and b static int __gcd( int a, int b) { if (b == 0) return a; return __gcd(b, a % b); } // A utility function to get the // middle index from corner indexes static int getMid( int s, int e) { return (s + (e - s) / 2); } // A recursive function to get the gcd of values in given range // of the array. The following are parameters for this function // st --> Pointer to segment tree // si --> Index of current node in the segment tree. Initially // 0 is passed as root is always at index 0 // ss & se --> Starting and ending indexes of the segment represented // by current node, i.e., st[si] // qs & qe --> Starting and ending indexes of query range static int getGcdUtil( int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range // then return the gcd of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return __gcd(getGcdUtil( ss, mid, qs, qe, 2 * si + 1), getGcdUtil( mid + 1, se, qs, qe, 2 * si + 2)); } // A recursive function to update the nodes which have the given // index in their range. The following are parameters // si, ss and se are same as getSumUtil() // i --> index of the element to be updated. This index is // in the input array. // diff --> Value to be added to all nodes which have i in range static void updateValueUtil( int ss, int se, int i, int new_val, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return ; // If only single element is left in the range if (ss == se) { st[si] = new_val; return ; } int mid = getMid(ss, se); updateValueUtil(ss, mid, i, new_val, 2 * si + 1); updateValueUtil(mid + 1, se, i, new_val, 2 * si + 2); st[si] = __gcd(st[2*si + 1], st[2*si + 2]); } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree static void updateValue( int []arr, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { Console.WriteLine( "Invalid Input" ); return ; } // Update the values of nodes in segment tree updateValueUtil( 0, n - 1, i, new_val, 0); } // Function to return the sum of elements in range // from index qs (query start) to qe (query end) // It mainly uses getSumUtil() static int getGcd( int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { Console.WriteLine( "Invalid Input" ); return -1; } return getGcdUtil( 0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st static int constructGcdUtil( int []arr, int ss, int se, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one element then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1), constructGcdUtil(arr, mid + 1, se, si * 2 + 2)); return st[si]; } // Function to construct segment tree from given array. This function // allocates memory for segment tree and calls constructSTUtil() to // fill the allocated memory static void constructGcd( int []arr, int n) { // Allocate memory for the segment tree // Height of segment tree int x = ( int )(Math.Ceiling(Math.Log(n)/Math.Log(2))); // Maximum size of segment tree int max_size = 2 * ( int )Math.Pow(2, x) - 1; // Allocate memory st = new int [max_size]; // Fill the allocated memory st constructGcdUtil(arr, 0, n - 1, 0); } // Driver code public static void Main(String []args) { int []arr = { 1, 3, 6, 9, 9, 11 }; int n = arr.Length; // Build segment tree from given array constructGcd(arr, n); // Print GCD of values in array from index 1 to 3 Console.WriteLine( getGcd( n, 1, 3) ); // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, n, 1, 10); // Find GCD after the value is updated Console.WriteLine( getGcd( n, 1, 3) ); } } // This code contributed by Rajput-Ji |
Javascript
<script> // javascript implementation of the approach // segment tree var st; // Recursive function to return gcd of a and b function __gcd(a , b) { if (b == 0) return a; return __gcd(b, a % b); } // A utility function to get the // middle index from corner indexes function getMid(s , e) { return (s + parseInt((e - s) / 2)); } // A recursive function to get the gcd of values in given range // of the array. The following are parameters for this function // st --> Pointer to segment tree // si --> Index of current node in the segment tree. Initially // 0 is passed as root is always at index 0 // ss & se --> Starting and ending indexes of the segment represented // by current node, i.e., st[si] // qs & qe --> Starting and ending indexes of query range function getGcdUtil(ss , se , qs , qe , si) { // If segment of this node is a part of given range // then return the gcd of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range var mid = getMid(ss, se); return __gcd(getGcdUtil(ss, mid, qs, qe, 2 * si + 1), getGcdUtil(mid + 1, se, qs, qe, 2 * si + 2)); } // A recursive function to update the nodes which have the given // index in their range. The following are parameters // si, ss and se are same as getSumUtil() // i --> index of the element to be updated. This index is // in the input array. // diff --> Value to be added to all nodes which have i in range function updateValueUtil(ss , se , i , diff , si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return ; // If the input index is in range of this node, then update // the value of the node and its children st[si] = st[si] + diff; if (se != ss) { var mid = getMid(ss, se); updateValueUtil(ss, mid, i, diff, 2 * si + 1); updateValueUtil(mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree function updateValue(arr , n , i , new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { document.write( "Invalid Input" ); return ; } // Get the difference between new value and old value var diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(0, n - 1, i, diff, 0); } // Function to return the sum of elements in range // from index qs (query start) to qe (query end) // It mainly uses getSumUtil() function getGcd(n , qs , qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { document.write( "Invalid Input" ); return -1; } return getGcdUtil(0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st function constructGcdUtil(arr , ss , se , si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one element then recur for left and // right subtrees and store the sum of values in this node var mid = getMid(ss, se); st[si] = __gcd(constructGcdUtil(arr, ss, mid, si * 2 + 1), constructGcdUtil(arr, mid + 1, se, si * 2 + 2)); return st[si]; } // Function to construct segment tree from given array. This function // allocates memory for segment tree and calls constructSTUtil() to // fill the allocated memory function constructGcd(arr , n) { // Allocate memory for the segment tree // Height of segment tree var x = parseInt( (Math.ceil(Math.log(n) / Math.log(2)))); // Maximum size of segment tree var max_size = 2 * parseInt( Math.pow(2, x) - 1); // Allocate memory st = Array(max_size).fill(0); // Fill the allocated memory st constructGcdUtil(arr, 0, n - 1, 0); } // Driver code var arr = [ 1, 3, 6, 9, 9, 11 ]; var n = arr.length; // Build segment tree from given array constructGcd(arr, n); // Print GCD of values in array from index 1 to 3 document.write(getGcd(n, 1, 3)+ "<br/>" ); // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, n, 1, 10); // Find GCD after the value is updated document.write(getGcd(n, 1, 3)); // This code contributed by umadevi9616 </script> |
3 1
Time Complexity: O(n log n), as segment tree construction will take O(n log n) time. Where n is the number of elements in the array.
Auxiliary Space: O(n log n), as we are using extra space for the segment tree. Where n is the number of elements in the array.
Please Login to comment...