Skip to content
Related Articles

Related Articles

Improve Article

Queries to find the left-most given type integer in a binary array

  • Last Updated : 16 Jul, 2021

Given a binary array arr[], the task is to design a data structure that supports the following operations in O(1). 
 

  • Type 1: Remove and print the leftmost 0 from the array.
  • Type 2: Remove and print the leftmost 1 from the array.
  • Type 3: Remove and print the leftmost element from the array.

If any of the requested element is not in the array then print -1.
Examples: 
 

Input: arr[] = {1, 0, 1, 1, 1}, q[] = {1, 3, 1} 
Output: 


-1 
Type 1 query: Print 0 and the array become {1, 1, 1, 1} 
Type 3 query: Print 1, arr[] = {1, 1, 1} 
Type 1 query: There are no 0s left, so print -1
Input: arr[] = {1, 0, 1, 0, 1}, q[] = {3, 3, 3} 
Output: 



 

 

Naive approach: A simple approach is to insert all the elements in a queue which supports first in first out. This approach will work in O(1) for finding the leftmost element in the array but it cannot find the left-most 1 or the left-most 0 in O(1).
Efficient approach: Create two queues, the first queue will store the indices of the 0s in the order of appearance and the second queue will store the indices of 1s in the order of appearance. Now, the given operations can be performed as follows: 
 



  • Type 1: Print the remove the head of the first queue in O(1).
  • Type 2: Print the remove the head of the second queue in O(1).
  • Type 3: Compare the head of both the queues and return the one with minimum index and then remove it..

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// To store the indices of 0s and 1s
static queue<int> zero;
static queue<int> one ;
 
// Function to return the leftmost 0
static int getLeftMostZero()
{
 
    // If there are no 0s
    if (zero.empty())
        return -1;
 
    // pop the head of the queue
    zero.pop();
    return 0;
}
 
// Function to return the leftmost 1
static int getLeftMostOne()
{
 
    // If there are no 1s
    if (one.empty())
        return -1;
 
    // pop the head of the queue
    one.pop();
    return 1;
}
 
// Function to return the pre-calculate array
// such that arr[i] stores the count of
// valid numbers in the range [0, i]
int getLeftMostElement()
{
 
    // If there are no elements left
    if (zero.empty() && one.empty())
        return -1;
 
    // If only 1s are there
    else if (zero.empty())
    {
        one.pop();
        return 1;
    }
 
    // If only 0s are there
    else if (one.empty())
    {
        zero.pop();
        return 0;
    }
 
    // Get the element which is at
    // the left-most position
    int res = (zero.front() < one.front()) ? 0 : 1;
 
    if (res == 0)
        zero.pop();
    else
        one.pop();
 
    return res;
}
 
// Function to perform the queries
void performQueries(int arr[], int n,
                    int queries[], int q)
{
 
    for (int i = 0; i < n; i++)
    {
        if (arr[i] == 0)
            zero.push(i);
        else
            one.push(i);
    }
 
    // For every query
    for (int i = 0; i < q; i++)
    {
 
        // Get its type
        int type = queries[i];
        switch (type)
        {
 
            // Perform type 1 query
            case 1:
                cout << (getLeftMostZero())
                     << endl;
                break;
     
            // Perform type 2 query
            case 2:
                cout << (getLeftMostOne())
                     << endl;
                break;
     
            // Perform type 3 query
            case 3:
                cout << (getLeftMostElement())
                     << endl;
                break;
        }
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 0, 1, 1, 1 };
    int n = sizeof(arr) / sizeof(int);
    int queries[] = { 1, 3, 1 };
    int q = sizeof(queries) / sizeof(int);
 
    performQueries(arr, n, queries, q);
}
 
// This code is contributed by andrew1234

Java




// Java implementation of the approach
import java.util.*;
class GFG {
 
    // Function to return the leftmost 0
    static int getLeftMostZero(Queue<Integer> zero)
    {
 
        // If there are no 0s
        if (zero.isEmpty())
            return -1;
 
        // Remove the head of the queue
        zero.remove();
        return 0;
    }
 
    // Function to return the leftmost 1
    static int getLeftMostOne(Queue<Integer> one)
    {
 
        // If there are no 1s
        if (one.isEmpty())
            return -1;
 
        // Remove the head of the queue
        one.remove();
        return 1;
    }
 
    // Function to return the pre-calculate array
    // such that arr[i] stores the count of
    // valid numbers in the range [0, i]
    static int getLeftMostElement(Queue<Integer> zero, Queue<Integer> one)
    {
 
        // If there are no elements left
        if (zero.isEmpty() && one.isEmpty())
            return -1;
 
        // If only  1s are there
        else if (zero.isEmpty()) {
            one.remove();
            return 1;
        }
 
        // If only 0s are there
        else if (one.isEmpty()) {
            zero.remove();
            return 0;
        }
 
        // Get the element which is at
        // the left-most position
        int res = (zero.peek() < one.peek()) ? 0 : 1;
 
        if (res == 0)
            zero.remove();
        else
            one.remove();
 
        return res;
    }
 
    // Function to perform the queries
    static void performQueries(int arr[], int n, int queries[], int q)
    {
 
        // To store the indices of 0s and 1s
        Queue<Integer> zero = new LinkedList<>();
        Queue<Integer> one = new LinkedList<>();
        for (int i = 0; i < n; i++) {
            if (arr[i] == 0)
                zero.add(i);
            else
                one.add(i);
        }
 
        // For every query
        for (int i = 0; i < q; i++) {
 
            // Get its type
            int type = queries[i];
            switch (type) {
 
            // Perform type 1 query
            case 1:
                System.out.println(getLeftMostZero(zero));
                break;
 
            // Perform type 2 query
            case 2:
                System.out.println(getLeftMostOne(one));
                break;
 
            // Perform type 3 query
            case 3:
                System.out.println(getLeftMostElement(zero, one));
                break;
            }
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 1, 0, 1, 1, 1 };
        int n = arr.length;
        int queries[] = { 1, 3, 1 };
        int q = queries.length;
 
        performQueries(arr, n, queries, q);
    }
}

Python3




# Python3 implementation of the approach
from collections import deque
 
# To store the indices of 0s and 1s
zero = deque()
one = deque()
 
# Function to return the leftmost 0
def getLeftMostZero():
 
    # If there are no 0s
    if not len(zero):
        return -1
 
    # pop the head of the queue
    zero.popleft()
    return 0
 
# Function to return the leftmost 1
def getLeftMostOne():
 
    # If there are no 1s
    if not len(one):
        return -1
 
    # pop the head of the queue
    one.popleft()
    return 1
 
# Function to return the pre-calculate array
# such that arr[i] stores the count of
# valid numbers in the range [0, i]
def getLeftMostElement():
 
    # If there are no elements left
    if not len(zero) and not len(one):
        return -1
 
    # If only 1s are there
    elif not len(zero):
        one.popleft()
        return 1
 
    # If only 0s are there
    elif not len(one):
        zero.popleft()
        return 0
 
    # Get the element which is at
    # the left-most position
    res = 0 if zero[0] < one[0] else 1
 
    if res == 0:
        zero.popleft()
    else:
        one.popleft()
 
    return res
 
# Function to perform the queries
def performQueries(arr: list, n: int, queries: list, q: int):
    for i in range(n):
        if arr[i] == 0:
            zero.append(i)
        else:
            one.append(i)
 
    # For every query
    for i in range(q):
 
        # Get its type
        type = queries[i]
 
        # Perform type 1 query
        if type == 1:
            print(getLeftMostZero())
 
        # Perform type 2 query
        elif type == 2:
            print(getLeftMostOne())
 
        # Perform type 3 query
        elif type == 3:
            print(getLeftMostElement())
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 0, 1, 1, 1]
    n = len(arr)
    queries = [1, 3, 1]
    q = len(queries)
 
    performQueries(arr, n, queries, q)
 
# This code is contributed by
# sanjeev2552

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to return the leftmost 0
    static int getLeftMostZero(Queue<int> zero)
    {
 
        // If there are no 0s
        if (zero.Count == 0)
            return -1;
 
        // Remove the head of the queue
        zero.Dequeue();
        return 0;
    }
 
    // Function to return the leftmost 1
    static int getLeftMostOne(Queue<int> one)
    {
 
        // If there are no 1s
        if (one.Count == 0)
            return -1;
 
        // Remove the head of the queue
        one.Dequeue();
        return 1;
    }
 
    // Function to return the pre-calculate array
    // such that arr[i] stores the count of
    // valid numbers in the range [0, i]
    static int getLeftMostElement(Queue<int> zero, 
                                  Queue<int> one)
    {
 
        // If there are no elements left
        if (zero.Count == 0 && one.Count == 0)
            return -1;
 
        // If only 1s are there
        else if (zero.Count == 0)
        {
            one.Dequeue();
            return 1;
        }
 
        // If only 0s are there
        else if (one.Count == 0)
        {
            zero.Dequeue();
            return 0;
        }
 
        // Get the element which is at
        // the left-most position
        int res = (zero.Peek() < one.Peek()) ? 0 : 1;
 
        if (res == 0)
            zero.Dequeue();
        else
            one.Dequeue();
 
        return res;
    }
 
    // Function to perform the queries
    static void performQueries(int []arr, int n,
                               int []queries, int q)
    {
 
        // To store the indices of 0s and 1s
        Queue<int> zero = new Queue<int>();
        Queue<int> one = new Queue<int>();
        for (int i = 0; i < n; i++)
        {
            if (arr[i] == 0)
                zero.Enqueue(i);
            else
                one.Enqueue(i);
        }
 
        // For every query
        for (int i = 0; i < q; i++)
        {
 
            // Get its type
            int type = queries[i];
            switch (type)
            {
 
                // Perform type 1 query
                case 1:
                    Console.WriteLine(getLeftMostZero(zero));
                    break;
     
                // Perform type 2 query
                case 2:
                    Console.WriteLine(getLeftMostOne(one));
                    break;
     
                // Perform type 3 query
                case 3:
                    Console.WriteLine(getLeftMostElement(zero, one));
                    break;
            }
        }
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int []arr = { 1, 0, 1, 1, 1 };
        int n = arr.Length;
        int []queries = { 1, 3, 1 };
        int q = queries.Length;
 
        performQueries(arr, n, queries, q);
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the leftmost 0
function getLeftMostZero(zero)
{
    // If there are no 0s
        if (zero.length==0)
            return -1;
   
        // Remove the head of the queue
        zero.shift();
        return 0;
}
 
// Function to return the leftmost 1
function getLeftMostOne(one)
{
    // If there are no 1s
        if (one.length==0)
            return -1;
   
        // Remove the head of the queue
        one.shift();
        return 1;
}
 
// Function to return the pre-calculate array
    // such that arr[i] stores the count of
    // valid numbers in the range [0, i]
function getLeftMostElement(zero,one)
{
    // If there are no elements left
        if (zero.length==0 && one.length==0)
            return -1;
   
        // If only  1s are there
        else if (zero.length==0) {
            one.shift();
            return 1;
        }
   
        // If only 0s are there
        else if (one.length==0) {
            zero.shift();
            return 0;
        }
   
        // Get the element which is at
        // the left-most position
        let res = (zero[0] < one[0]) ? 0 : 1;
   
        if (res == 0)
            zero.shift();
        else
            one.shift();
   
        return res;
}
 
// Function to perform the queries
function performQueries(arr,n,queries,q)
{
    // To store the indices of 0s and 1s
        let zero = [];
        let one = [];
        for (let i = 0; i < n; i++) {
            if (arr[i] == 0)
                zero.push(i);
            else
                one.push(i);
        }
   
        // For every query
        for (let i = 0; i < q; i++) {
   
            // Get its type
            let type = queries[i];
            switch (type) {
   
            // Perform type 1 query
            case 1:
                document.write(getLeftMostZero(zero)+"<br>");
                break;
   
            // Perform type 2 query
            case 2:
                document.write(getLeftMostOne(one)+"<br>");
                break;
   
            // Perform type 3 query
            case 3:
                document.write(getLeftMostElement(zero, one)+"<br>");
                break;
            }
        }
}
 
// Driver code
let arr=[1, 0, 1, 1, 1];
let n = arr.length;
let queries=[1, 3, 1 ];
let q = queries.length;
 
performQueries(arr, n, queries, q);
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
0
1
-1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :