Queries to find the count of connected Non-Empty Cells in a Matrix with updates

Given a boolean matrix mat[][] consisting of N rows and M columns, initially filled with 0‘s(empty cells), an integer K and queries Q[][] of the type {X, Y}, the task is to replace mat[X][Y] = 1(non-empty cells) and count the number of connected non-empty cells from the given matrix.
Examples: 

Input: N = 3, M = 3, K = 4, Q[][] = {{0, 0}, {1, 1}, {1, 0}, {1, 2}} 
Output: 1 2 1 1 
Explanation: 
Initially, mat[][] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 
Query 1: mat[][] = {{1, 0, 0}, {0, 0, 0}, {0, 0, 0}}, Count = 1 
Query 1: mat[][] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}, Count = 2 
Query 1: mat[][] = {{1, 0, 0}, {1, 1, 0}, {0, 0, 0}}, Count = 1 
Query 1: mat[][] = {{1, 0, 0}, {1, 1, 1}, {0, 0, 0}}, Count = 1
Input: N = 2, M = 2, K = 2, Q[][] = {{0, 0}, {0, 1}} 
Output : 1 1 
 

Approach: 
The problem can be solved using Disjoint Set Data Structure. Follow the steps below to solve the problem:  

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Count of connected cells
int ctr = 0;
 
// Function to return the representative
// of the Set to which x belongs
int find(vector<int>& parent, int x)
{
 
    // If x is parent of itself
    if (parent[x] == x)
 
        // x is representative
        // of the Set
        return x;
 
    // Otherwise
    parent[x] = find(parent, parent[x]);
 
    // Path Compression
    return parent[x];
}
 
// Unites the set that includes
// x and the set that includes y
void setUnion(vector<int>& parent,
              vector<int>& rank, int x, int y)
{
    // Find the representatives(or the
    // root nodes) for x an y
    int parentx = find(parent, x);
    int parenty = find(parent, y);
 
    // If both are in the same set
    if (parenty == parentx)
        return;
 
    // Decrement count
    ctr--;
 
    // If x's rank is less than y's rank
    if (rank[parentx] < rank[parenty]) {
        parent[parentx] = parenty;
    }
 
    // Otherwise
    else if (rank[parentx] > rank[parenty]) {
        parent[parenty] = parentx;
    }
    else {
 
        // Then move x under y (doesn't matter
        // which one goes where)
        parent[parentx] = parenty;
 
        // And increment the result tree's
        // rank by 1
        rank[parenty]++;
    }
}
 
// Function to count the number of
// connected cells in the matrix
vector<int> solve(int n, int m,
                  vector<pair<int, int> >& query)
{
 
    // Store result for queries
    vector<int> result(query.size());
 
    // Store representative of
    // each element
    vector<int> parent(n * m);
 
    // Initially, all elements
    // are in their own set
    for (int i = 0; i < n * m; i++)
        parent[i] = i;
 
    // Stores the rank(depth) of each node
    vector<int> rank(n * m, 1);
 
    vector<bool> grid(n * m, 0);
 
    for (int i = 0; i < query.size(); i++) {
 
        int x = query[i].first;
        int y = query[i].second;
 
        // If the grid[x*m + y] is already
        // set, store the result
        if (grid[m * x + y] == 1) {
            result[i] = ctr;
            continue;
        }
 
        // Set grid[x*m + y] to 1
        grid[m * x + y] = 1;
 
        // Increment count.
        ctr++;
 
        // Check for all adjacent cells
        // to do a Union with neighbour's
        // set if neighbour is also 1
        if (x > 0 and grid[m * (x - 1) + y] == 1)
            setUnion(parent, rank,
                     m * x + y, m * (x - 1) + y);
 
        if (y > 0 and grid[m * (x) + y - 1] == 1)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y - 1);
 
        if (x < n - 1 and grid[m * (x + 1) + y] == 1)
            setUnion(parent, rank,
                     m * x + y, m * (x + 1) + y);
 
        if (y < m - 1 and grid[m * (x) + y + 1] == 1)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y + 1);
 
        // Store result.
        result[i] = ctr;
    }
    return result;
}
 
// Driver Code
int main()
{
    int N = 3, M = 3, K = 4;
 
    vector<pair<int, int> > query
        = { { 0, 0 },
            { 1, 1 },
            { 1, 0 },
            { 1, 2 } };
    vector<int> result = solve(N, M, query);
 
    for (int i = 0; i < K; i++)
        cout << result[i] << " ";
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Count of connected cells
static int ctr = 0;
 
// Function to return the representative
// of the Set to which x belongs
static int find(int []parent, int x)
{
     
    // If x is parent of itself
    if (parent[x] == x)
 
        // x is representative
        // of the Set
        return x;
 
    // Otherwise
    parent[x] = find(parent, parent[x]);
 
    // Path Compression
    return parent[x];
}
 
// Unites the set that includes
// x and the set that includes y
static void setUnion(int[] parent,
                     int[] rank, int x, int y)
{
     
    // Find the representatives(or the
    // root nodes) for x an y
    int parentx = find(parent, x);
    int parenty = find(parent, y);
 
    // If both are in the same set
    if (parenty == parentx)
        return;
 
    // Decrement count
    ctr--;
 
    // If x's rank is less than y's rank
    if (rank[parentx] < rank[parenty])
    {
        parent[parentx] = parenty;
    }
 
    // Otherwise
    else if (rank[parentx] > rank[parenty])
    {
        parent[parenty] = parentx;
    }
    else
    {
         
        // Then move x under y (doesn't matter
        // which one goes where)
        parent[parentx] = parenty;
 
        // And increment the result tree's
        // rank by 1
        rank[parenty]++;
    }
}
 
// Function to count the number of
// connected cells in the matrix
static int [] solve(int n, int m,
                    int [][]query)
{
     
    // Store result for queries
    int []result = new int[query.length];
     
    // Store representative of
    // each element
    int []parent = new int[n * m];
 
    // Initially, all elements
    // are in their own set
    for(int i = 0; i < n * m; i++)
        parent[i] = i;
 
    // Stores the rank(depth) of each node
    int []rank = new int[n * m];
    Arrays.fill(rank, 1);
     
    boolean []grid = new boolean[n * m];
 
    for(int i = 0; i < query.length; i++)
    {
        int x = query[i][0];
        int y = query[i][1];
 
        // If the grid[x*m + y] is already
        // set, store the result
        if (grid[m * x + y] == true)
        {
            result[i] = ctr;
            continue;
        }
 
        // Set grid[x*m + y] to 1
        grid[m * x + y] = true;
 
        // Increment count.
        ctr++;
 
        // Check for all adjacent cells
        // to do a Union with neighbour's
        // set if neighbour is also 1
        if (x > 0 && grid[m * (x - 1) + y] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x - 1) + y);
 
        if (y > 0 && grid[m * (x) + y - 1] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y - 1);
 
        if (x < n - 1 && grid[m * (x + 1) + y] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x + 1) + y);
 
        if (y < m - 1 && grid[m * (x) + y + 1] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y + 1);
 
        // Store result.
        result[i] = ctr;
    }
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3, M = 3, K = 4;
 
    int [][]query = { { 0, 0 },
                      { 1, 1 },
                      { 1, 0 },
                      { 1, 2 } };
    int[] result = solve(N, M, query);
 
    for(int i = 0; i < K; i++)
        System.out.print(result[i] + " ");
}
}
 
// This code is contributed by Amit Katiyar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to implement
# the above approach
 
# Count of connected cells
ctr = 0
 
# Function to return the
# representative of the Set
# to which x belongs
def find(parent, x):
 
    # If x is parent of itself
    if (parent[x] == x):
 
        # x is representative
        # of the Set
        return x
 
    # Otherwise
    parent[x] = find(parent,
                     parent[x])
 
    # Path Compression
    return parent[x]
 
# Unites the set that
# includes x and the
# set that includes y
def setUnion(parent,
             rank, x, y):
 
    global ctr
     
    # Find the representatives
    # (or the root nodes) for x an y
    parentx = find(parent, x)
    parenty = find(parent, y)
 
    # If both are in the same set
    if (parenty == parentx):
        return
 
    # Decrement count
    ctr -= 1
 
    # If x's rank is less than y's rank
    if (rank[parentx] < rank[parenty]):
        parent[parentx] = parenty
    
    # Otherwise
    elif (rank[parentx] > rank[parenty]):
        parent[parenty] = parentx
     
    else:
 
        # Then move x under y
        # (doesn't matter which
        # one goes where)
        parent[parentx] = parenty
 
        # And increment the result
        # tree's rank by 1
        rank[parenty] += 1
   
# Function to count the number of
# connected cells in the matrix
def solve(n, m, query):
 
    global ctr
     
    # Store result for queries
    result = [0] * len(query)
 
    # Store representative of
    # each element
    parent = [0] * (n * m)
 
    # Initially, all elements
    # are in their own set
    for i in range (n * m):
        parent[i] = i
 
    # Stores the rank(depth)
    # of each node
    rank = [1] * (n * m)
   
    grid = [0] * (n * m)
 
    for  i in range (len( query)):
        x = query[i][0]
        y = query[i][1]
 
        # If the grid[x*m + y] is already
        # set, store the result
        if (grid[m * x + y] == 1):
            result[i] = ctr
            continue
        
        # Set grid[x*m + y] to 1
        grid[m * x + y] = 1
 
        # Increment count.
        ctr += 1
 
        # Check for all adjacent cells
        # to do a Union with neighbour's
        # set if neighbour is also 1
        if (x > 0 and
            grid[m * (x - 1) + y] == 1):
            setUnion(parent, rank,
                     m * x + y,
                     m * (x - 1) + y)
 
        if (y > 0 and
            grid[m * (x) + y - 1] == 1):
            setUnion(parent, rank,
                     m * x + y,
                     m * (x) + y - 1)
 
        if (x < n - 1 and
            grid[m * (x + 1) + y] == 1):
            setUnion(parent, rank,
                     m * x + y,
                     m * (x + 1) + y)
 
        if (y < m - 1 and
            grid[m * (x) + y + 1] == 1):
            setUnion(parent, rank,
                     m * x + y,
                     m * (x) + y + 1)
 
        # Store result.
        result[i] = ctr
    return result
 
# Driver Code
if __name__ == "__main__":
       
    N = 3
    M = 3
    K = 4
    query = [[0, 0],
             [1, 1],
             [1, 0],
             [1, 2]]
    result = solve(N, M, query)
    for i in range (K):
        print (result[i], end = " ")
         
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
class GFG{
 
// Count of connected cells
static int ctr = 0;
 
// Function to return the representative
// of the Set to which x belongs
static int find(int []parent, int x)
{
     
    // If x is parent of itself
    if (parent[x] == x)
 
        // x is representative
        // of the Set
        return x;
 
    // Otherwise
    parent[x] = find(parent, parent[x]);
 
    // Path Compression
    return parent[x];
}
 
// Unites the set that includes
// x and the set that includes y
static void setUnion(int[] parent,
                     int[] rank,
                     int x, int y)
{
     
    // Find the representatives(or the
    // root nodes) for x an y
    int parentx = find(parent, x);
    int parenty = find(parent, y);
 
    // If both are in the same set
    if (parenty == parentx)
        return;
 
    // Decrement count
    ctr--;
 
    // If x's rank is less than y's rank
    if (rank[parentx] < rank[parenty])
    {
        parent[parentx] = parenty;
    }
 
    // Otherwise
    else if (rank[parentx] > rank[parenty])
    {
        parent[parenty] = parentx;
    }
    else
    {
         
        // Then move x under y (doesn't matter
        // which one goes where)
        parent[parentx] = parenty;
 
        // And increment the result tree's
        // rank by 1
        rank[parenty]++;
    }
}
 
// Function to count the number of
// connected cells in the matrix
static int [] solve(int n, int m,
                    int [,]query)
{
     
    // Store result for queries
    int []result = new int[query.Length];
     
    // Store representative of
    // each element
    int []parent = new int[n * m];
 
    // Initially, all elements
    // are in their own set
    for(int i = 0; i < n * m; i++)
        parent[i] = i;
 
    // Stores the rank(depth) of each node
    int []rank = new int[n * m];
    for(int i = 0; i < rank.Length; i++)
        rank[i] = 1;
    bool []grid = new bool[n * m];
 
    for(int i = 0; i < query.GetLength(0); i++)
    {
        int x = query[i, 0];
        int y = query[i, 1];
 
        // If the grid[x*m + y] is already
        // set, store the result
        if (grid[m * x + y] == true)
        {
            result[i] = ctr;
            continue;
        }
 
        // Set grid[x*m + y] to 1
        grid[m * x + y] = true;
 
        // Increment count.
        ctr++;
 
        // Check for all adjacent cells
        // to do a Union with neighbour's
        // set if neighbour is also 1
        if (x > 0 && grid[m * (x - 1) + y] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x - 1) + y);
 
        if (y > 0 && grid[m * (x) + y - 1] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y - 1);
 
        if (x < n - 1 && grid[m * (x + 1) + y] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x + 1) + y);
 
        if (y < m - 1 && grid[m * (x) + y + 1] == true)
            setUnion(parent, rank,
                     m * x + y, m * (x) + y + 1);
 
        // Store result.
        result[i] = ctr;
    }
    return result;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 3, M = 3, K = 4;
 
    int [,]query = {{ 0, 0 }, { 1, 1 },
                    { 1, 0 }, { 1, 2 }};
    int[] result = solve(N, M, query);
 
    for(int i = 0; i < K; i++)
        Console.Write(result[i] + " ");
}
}
 
// This code is contributed by sapnasingh4991
chevron_right

Output: 
1 2 1 1



 

Time Complexity: O(N * M * sizeof(Q)) 
Auxiliary Space: O(N*M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :