Skip to content
Related Articles

Related Articles

Queries to check if vertices X and Y are in the same Connected Component of an Undirected Graph
  • Last Updated : 24 Mar, 2021
GeeksforGeeks - Summer Carnival Banner

Given an undirected graph consisting of N vertices and M edges and queries Q[][] of the type {X, Y}, the task is to check if the vertices X and Y are in the same connected component of the Graph.

Examples:

Input: Q[][] = {{1, 5}, {3, 2}, {5, 2}} 
Graph: 
 

1-3-4   2
  |
  5   

Output: Yes No No 
Explanation: 
From the given graph, it can be observed that the vertices {1, 5} are in the same connected component. 
But {3, 2} and {5, 2} are from different components.
Input: Q[][] = {{1, 9}, {2, 8}, {3, 5}, {7, 9}} 
Graph: 
 

1-3-4  2-5-6  7-9
       |
       8   

Output: No Yes No Yes 
Explanation: 
From the given graph, it can be observed that the vertices {2, 8} and {7, 9} is from same connected component. 
But {1, 9} and {3, 5} are from different components. 
 



Approach: The idea is to use the Disjoint Set-Union to solve the problem. The basic interface of the Disjoint set union data structure used is as follows:

  • make_set(v): To create a new set consisting of the new element v.
  • find_set(v): Returns the representative of the set that contains the element v. This is optimized using Path Compression.
  • union_set(a, b): Merges the two specified sets (the set in which the element is located, and the set in which the element b is located). Two connected vertices are merged to form a single set(Connected Components).
  • Initially, all the vertices will be a different set (i.e parent of itself ) and are formed using make_set function.
  • The vertices will be merged if two of them are connected using union_set function.
  • Now, for each query, use the find_set function to check if the given two vertices are from the same set or not.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Maximum number of nodes or
// vertices that can be present
// in the graph
#define MAX_NODES 100005
 
// Store the parent of each vertex
int parent[MAX_NODES];
 
// Stores the size of each set
int size_set[MAX_NODES];
 
// Function to initialize the
// parent of each vertices
void make_set(int v)
{
    parent[v] = v;
    size_set[v] = 1;
}
 
// Function to find the representative
// of the set which contain element v
int find_set(int v)
{
    if (v == parent[v])
        return v;
 
    // Path compression technique to
    // optimize the time complexity
    return parent[v]
           = find_set(parent[v]);
}
 
// Function to merge two different set
// into a single set by finding the
// representative of each set and merge
// the smallest set with the larger one
void union_set(int a, int b)
{
 
    // Finding the set representative
    // of each element
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have different set
    // repersentative
    if (a != b) {
 
        // Compare the set sizes
        if (size_set[a] < size_set[b])
            swap(a, b);
 
        // Assign parent of smaller set
        // to the larger one
        parent[b] = a;
 
        // Add the size of smaller set
        // to the larger one
        size_set[a] += size_set[b];
    }
}
 
// Function to check the vertices
// are on the same set or not
string check(int a, int b)
{
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have same
    // set representative or not
    return (a == b) ? "Yes" : "No";
}
 
// Driver Code
int main()
{
    int n = 5, m = 3;
 
    make_set(1);
    make_set(2);
    make_set(3);
    make_set(4);
    make_set(5);
 
    // Connected vertices and taking
    // them into single set
    union_set(1, 3);
    union_set(3, 4);
    union_set(3, 5);
 
    // Number of queries
    int q = 3;
 
    // Function call
    cout << check(1, 5) << endl;
    cout << check(3, 2) << endl;
    cout << check(5, 2) << endl;
 
    return 0;
}

Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Maximum number of nodes or
// vertices that can be present
// in the graph
static final int MAX_NODES = 100005;
 
// Store the parent of each vertex
static int []parent = new int[MAX_NODES];
 
// Stores the size of each set
static int []size_set = new int[MAX_NODES];
 
// Function to initialize the
// parent of each vertices
static void make_set(int v)
{
    parent[v] = v;
    size_set[v] = 1;
}
 
// Function to find the representative
// of the set which contain element v
static int find_set(int v)
{
    if (v == parent[v])
        return v;
 
    // Path compression technique to
    // optimize the time complexity
    return parent[v] = find_set(parent[v]);
}
 
// Function to merge two different set
// into a single set by finding the
// representative of each set and merge
// the smallest set with the larger one
static void union_set(int a, int b)
{
 
    // Finding the set representative
    // of each element
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have different set
    // repersentative
    if (a != b) {
 
        // Compare the set sizes
        if (size_set[a] < size_set[b])
        {
            a = a+b;
            b = a-b;
            a = a-b;
        }
 
        // Assign parent of smaller set
        // to the larger one
        parent[b] = a;
 
        // Add the size of smaller set
        // to the larger one
        size_set[a] += size_set[b];
    }
}
 
// Function to check the vertices
// are on the same set or not
static String check(int a, int b)
{
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have same
    // set representative or not
    return (a == b) ? "Yes" : "No";
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 5, m = 3;
 
    make_set(1);
    make_set(2);
    make_set(3);
    make_set(4);
    make_set(5);
 
    // Connected vertices and taking
    // them into single set
    union_set(1, 3);
    union_set(3, 4);
    union_set(3, 5);
 
    // Number of queries
    int q = 3;
 
    // Function call
    System.out.print(check(1, 5) + "\n");
    System.out.print(check(3, 2) + "\n");
    System.out.print(check(5, 2) + "\n");
}
}
 
// This code is contributed by Rohit_ranjan

Python3




# Python3 Program to implement
# the above approach
 
# Maximum number of nodes or
# vertices that can be present
# in the graph
MAX_NODES = 100005
  
# Store the parent of each vertex
parent = [0 for i in range(MAX_NODES)];
  
# Stores the size of each set
size_set = [0 for i in range(MAX_NODES)];
  
# Function to initialize the
# parent of each vertices
def make_set(v):
     
    parent[v] = v;
    size_set[v] = 1;
  
# Function to find the
# representative of the
# set which contain element v
def find_set(v):
 
    if (v == parent[v]):
        return v;
  
    # Path compression technique to
    # optimize the time complexity
    parent[v] = find_set(parent[v]);
     
    return parent[v]
  
# Function to merge two
# different set into a
# single set by finding the
# representative of each set
# and merge the smallest set
# with the larger one
def union_set(a, b):
  
    # Finding the set
    # representative
    # of each element
    a = find_set(a);
    b = find_set(b);
  
    # Check if they have
    # different set
    # repersentative
    if (a != b):
  
        # Compare the set sizes
        if (size_set[a] <
            size_set[b]):
            swap(a, b);
  
        # Assign parent of
        # smaller set to
        # the larger one
        parent[b] = a;
  
        # Add the size of smaller set
        # to the larger one
        size_set[a] += size_set[b];
  
# Function to check the vertices
# are on the same set or not
def check(a, b):
 
    a = find_set(a);
    b = find_set(b);
  
    # Check if they have same
    # set representative or not
    if a == b:
        return ("Yes")
    else:
        return ("No")
 
# Driver code     
if __name__=="__main__":
     
    n = 5
    m = 3;
  
    make_set(1);
    make_set(2);
    make_set(3);
    make_set(4);
    make_set(5);
  
    # Connected vertices
    # and taking them
    # into single set
    union_set(1, 3);
    union_set(3, 4);
    union_set(3, 5);
  
    # Number of queries
    q = 3;
  
    # Function call
    print(check(1, 5))
    print(check(3, 2))
    print(check(5, 2))
 
# This code is contributed by rutvik_56

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Maximum number of nodes or
// vertices that can be present
// in the graph
static readonly int MAX_NODES = 100005;
 
// Store the parent of each vertex
static int []parent = new int[MAX_NODES];
 
// Stores the size of each set
static int []size_set = new int[MAX_NODES];
 
// Function to initialize the
// parent of each vertices
static void make_set(int v)
{
    parent[v] = v;
    size_set[v] = 1;
}
 
// Function to find the representative
// of the set which contain element v
static int find_set(int v)
{
    if (v == parent[v])
        return v;
 
    // Path compression technique to
    // optimize the time complexity
    return parent[v] = find_set(parent[v]);
}
 
// Function to merge two different set
// into a single set by finding the
// representative of each set and merge
// the smallest set with the larger one
static void union_set(int a, int b)
{
 
    // Finding the set representative
    // of each element
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have different set
    // repersentative
    if (a != b)
    {
         
        // Compare the set sizes
        if (size_set[a] < size_set[b])
        {
            a = a + b;
            b = a - b;
            a = a - b;
        }
 
        // Assign parent of smaller set
        // to the larger one
        parent[b] = a;
 
        // Add the size of smaller set
        // to the larger one
        size_set[a] += size_set[b];
    }
}
 
// Function to check the vertices
// are on the same set or not
static String check(int a, int b)
{
    a = find_set(a);
    b = find_set(b);
 
    // Check if they have same
    // set representative or not
    return (a == b) ? "Yes" : "No";
}
 
// Driver Code
public static void Main(String[] args)
{
    //int n = 5, m = 3;
 
    make_set(1);
    make_set(2);
    make_set(3);
    make_set(4);
    make_set(5);
 
    // Connected vertices and taking
    // them into single set
    union_set(1, 3);
    union_set(3, 4);
    union_set(3, 5);
 
    // Number of queries
    //int q = 3;
 
    // Function call
    Console.Write(check(1, 5) + "\n");
    Console.Write(check(3, 2) + "\n");
    Console.Write(check(5, 2) + "\n");
}
}
 
// This code is contributed by Amit Katiyar

Javascript




<script>
 
    // Javascript Program to implement
    // the above approach
     
    // Maximum number of nodes or
    // vertices that can be present
    // in the graph
    let MAX_NODES = 100005;
 
    // Store the parent of each vertex
    let parent = new Array(MAX_NODES);
 
    // Stores the size of each set
    let size_set = new Array(MAX_NODES);
 
    // Function to initialize the
    // parent of each vertices
    function make_set(v)
    {
        parent[v] = v;
        size_set[v] = 1;
    }
 
    // Function to find the representative
    // of the set which contain element v
    function find_set(v)
    {
        if (v == parent[v])
            return v;
 
        // Path compression technique to
        // optimize the time complexity
        return parent[v]
               = find_set(parent[v]);
    }
 
    // Function to merge two different set
    // into a single set by finding the
    // representative of each set and merge
    // the smallest set with the larger one
    function union_set(a, b)
    {
 
        // Finding the set representative
        // of each element
        a = find_set(a);
        b = find_set(b);
 
        // Check if they have different set
        // repersentative
        if (a != b) {
 
            // Compare the set sizes
            if (size_set[a] < size_set[b])
            {
                let temp = a;
                a = b;
                b = temp;
            }
 
            // Assign parent of smaller set
            // to the larger one
            parent[b] = a;
 
            // Add the size of smaller set
            // to the larger one
            size_set[a] += size_set[b];
        }
    }
 
    // Function to check the vertices
    // are on the same set or not
    function check(a, b)
    {
        a = find_set(a);
        b = find_set(b);
 
        // Check if they have same
        // set representative or not
        return (a == b) ? "Yes" : "No";
    }
     
    let n = 5, m = 3;
  
    make_set(1);
    make_set(2);
    make_set(3);
    make_set(4);
    make_set(5);
  
    // Connected vertices and taking
    // them into single set
    union_set(1, 3);
    union_set(3, 4);
    union_set(3, 5);
  
    // Number of queries
    let q = 3;
  
    // Function call
    document.write(check(1, 5) + "</br>");
    document.write(check(3, 2) + "</br>");
    document.write(check(5, 2) + "</br>");
 
 
</script>
Output: 
Yes
No
No

 

Time Complexity: O(N + M + sizeof(Q)) 
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :