Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Queries on probability of even or odd number in given ranges

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array A of size N, containing integers. We have to answer Q queries where each query is of the form: 

  • K L R : If K = 0, then you have to find the probability of choosing an even number from the segment [L, R] (both inclusive) in the array A. 
  • K L R : If K = 1, then you have to find the probability of choosing an odd number from the segment [L, R] (both inclusive) in the array A. 

For each query print two integers p and q which represent the probability p/q. Both p and q are reduced to the minimal form. 
If p is 0 print 0 or if p is equal to q print 1, otherwise print p and q alone. 

Examples: 

Input : N = 5, arr[] = { 6, 5, 2, 1, 7 }
        query 1: 0 2 2
        query 2: 1 2 5 
        query 3: 0 1 4  
Output : 0
         3 4
         1 2
Explanation : 
First query is to find probability of even 
element in range [2, 2]. Since range contains 
a single element 5 which is odd, the answer 
is 0. Second query is to find probability of
odd element in range [2, 5]. There are 3
odd elements in range probability is 3/4.
Third query is for even elements in range
from 1 to 4. Since there are equal even
and odd elements, probability is 2/4
which is 1/2.

The idea is to maintain two arrays, say even[] and odd[], which maintain the number of even or odd element upto index i. Now, to answer each query, we can compute result denominator q by finding number of element in the given query range. To find result numerator, we remove number of elements upto l – 1 from elements upto r. 
To output the answer in minimal form, we find the GCD of p and q and output p/gcd and q/gcd. For answer 0 and 1, we will explicitly specify the conditions.

Below is the implementation of this approach: 

C++




// CPP program to find probability of even
// or odd elements in a given range.
#include <bits/stdc++.h>
using namespace std;
 
// Number of tuples in a query
#define C 3
 
// Solve each query of K L R form
void solveQuery(int arr[], int n, int Q,
                           int query[][C])
{
    // To count number of odd and even
    // number upto i-th index.
    int even[n + 1];
    int odd[n + 1];
    even[0] = odd[0] = 0;
 
    // Counting number of odd and even
    // integer upto index i
    for (int i = 0; i < n; i++) {
 
        // If number is odd, increment the
        // count of odd frequency leave
        // even frequency same.
        if (arr[i] & 1) {
            odd[i + 1] = odd[i] + 1;
            even[i + 1] = even[i];
        }
 
        // If number is even, increment the
        // count of even frequency leave odd
        // frequency same.
        else {
            even[i + 1] = even[i] + 1;
            odd[i + 1] = odd[i];
        }
    }
 
    // To solve each query
    for (int i = 0; i < Q; i++) {
        int r = query[i][2];
        int l = query[i][1];
        int k = query[i][0];
 
        // Counting total number of element in
        // current query
        int q = r - l + 1;
        int p;
 
        // Counting number of odd or even element
        // in current query range
        if (k)
            p = odd[r] - odd[l - 1];
        else
            p = even[r] - even[l - 1];
 
        // If frequency is 0, output 0
        if (!p)
            cout << "0" << endl;
 
        // If frequency is equal to number of 
        // element in current range output 1.
        else if (p == q)
            cout << "1" << endl;
 
        // Else find the GCD of both. If yes,
        // output by dividing both number by gcd
        // to output the answer in reduced form.
        else {
            int g = __gcd(p, q);
            cout << p / g << " " << q / g << endl;
        }
    }
}
// Driven Program
int main()
{
    int arr[] = { 6, 5, 2, 1, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int Q = 2;
    int query[Q][C] = {
        { 0, 2, 2 },
        { 1, 2, 5 }
    };
 
    solveQuery(arr, n, Q, query);
    return 0;
}

Java




// java program to find probability
// of even or odd elements in a
// given range.
import java.io.*;
 
public class GFG {
         
    // Number of tuples in a query
    //static int C = 3;
    // Recursive function to return
    // gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
     
    // Solve each query of K L R form
    static void solveQuery(int []arr,
             int n, int Q, int [][]query)
    {
         
        // To count number of odd and even
        // number upto i-th index.
        int []even = new int[n + 1];
        int []odd = new int[n + 1];
        even[0] = odd[0] = 0;
     
        // Counting number of odd and even
        // integer upto index i
        for (int i = 0; i < n; i++)
        {
     
            // If number is odd, increment
            // the count of odd frequency
            // leave even frequency same.
            if ((arr[i] & 1) > 0)
            {
                odd[i + 1] = odd[i] + 1;
                even[i + 1] = even[i];
            }
     
            // If number is even, increment
            // the count of even frequency
            // leave odd frequency same.
            else
            {
                even[i + 1] = even[i] + 1;
                odd[i + 1] = odd[i];
            }
        }
     
        // To solve each query
        for (int i = 0; i < Q; i++)
        {
            int r = query[i][2];
            int l = query[i][1];
            int k = query[i][0];
     
            // Counting total number of
            // element in current query
            int q = r - l + 1;
            int p;
     
            // Counting number of odd or
            // even element in current
            // query range
            if (k > 0)
                p = odd[r] - odd[l - 1];
            else
                p = even[r] - even[l - 1];
     
            // If frequency is 0, output 0
            if (p <= 0)
                System.out.println("0");
     
            // If frequency is equal to
            // number of element in current
            // range output 1.
            else if (p == q)
                System.out.println("1");
     
            // Else find the GCD of both.
            // If yes, output by dividing
            // both number by gcd to output
            // the answer in reduced form.
            else
            {
                int g = __gcd(p, q);
                System.out.println(p / g
                          + " " + q / g);
            }
        }
    }
     
    // Driven Program
    static public void main (String[] args)
    {
        int []arr = { 6, 5, 2, 1, 7 };
        int n = arr.length;
        int Q = 2;
        int [][]query = { { 0, 2, 2 },
                          { 1, 2, 5 } };
 
        solveQuery(arr, n, Q, query);
    }
}
 
// This code is contributed by vt_m.

Python 3




# Python 3 program to find probability
# of even or odd elements in a given range.
import math
 
# Number of tuples in a query
C = 3
 
# Solve each query of K L R form
def solveQuery(arr, n, Q, query):
 
    # To count number of odd and even
    # number upto i-th index.
    even = [0] * (n + 1)
    odd = [0] * (n + 1)
    even[0] = 0
    odd[0] = 0
 
    # Counting number of odd and even
    # integer upto index i
    for i in range( n) :
 
        # If number is odd, increment the
        # count of odd frequency leave
        # even frequency same.
        if (arr[i] & 1) :
            odd[i + 1] = odd[i] + 1
            even[i + 1] = even[i]
 
        # If number is even, increment the
        # count of even frequency leave odd
        # frequency same.
        else :
            even[i + 1] = even[i] + 1
            odd[i + 1] = odd[i]
 
    # To solve each query
    for i in range( Q) :
        r = query[i][2]
        l = query[i][1]
        k = query[i][0]
 
        # Counting total number of element 
        # in current query
        q = r - l + 1
 
        # Counting number of odd or even 
        # element in current query range
        if (k):
            p = odd[r] - odd[l - 1]
        else:
            p = even[r] - even[l - 1]
 
        # If frequency is 0, output 0
        if (not p):
            print("0")
 
        # If frequency is equal to number of
        # element in current range output 1.
        elif (p == q):
            print("1")
 
        # Else find the GCD of both. If yes,
        # output by dividing both number by gcd
        # to output the answer in reduced form.
        else :
            g = math.gcd(p, q)
            print((p // g), (q // g))
 
# Driver Code
if __name__ =="__main__":
     
    arr = [ 6, 5, 2, 1, 7 ]
    n = len(arr)
    Q = 2
    query = [[0, 2, 2],
             [1, 2, 5]]
 
    solveQuery(arr, n, Q, query)
 
# This code is contributed by ita_c

C#




// C# program to find probability
// of even or odd elements in a
// given range.
using System;
 
public class GFG {
     
    // Number of tuples in a query
    //static int C = 3;
    // Recursive function to return
    // gcd of a and b
    static int __gcd(int a, int b)
    {
         
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
     
    // Solve each query of K L R form
    static void solveQuery(int []arr,
           int n, int Q, int [,]query)
    {
         
        // To count number of odd and
        // even number upto i-th index.
        int []even = new int[n + 1];
        int []odd = new int[n + 1];
        even[0] = odd[0] = 0;
     
        // Counting number of odd and
        // even integer upto index i
        for (int i = 0; i < n; i++)
        {
     
            // If number is odd,
            // increment the count of
            // odd frequency leave
            // even frequency same.
            if ((arr[i] & 1) > 0)
            {
                odd[i + 1] = odd[i] + 1;
                even[i + 1] = even[i];
            }
     
            // If number is even,
            // increment the count of
            // even frequency leave
            // odd frequency same.
            else
            {
                even[i + 1] = even[i] + 1;
                odd[i + 1] = odd[i];
            }
        }
     
        // To solve each query
        for (int i = 0; i < Q; i++)
        {
            int r = query[i,2];
            int l = query[i,1];
            int k = query[i,0];
     
            // Counting total number of
            // element in current query
            int q = r - l + 1;
            int p;
     
            // Counting number of odd
            // or even element in current
            // query range
            if (k > 0)
                p = odd[r] - odd[l - 1];
            else
                p = even[r] - even[l - 1];
     
            // If frequency is 0, output 0
            if (p <= 0)
                Console.WriteLine("0");
     
            // If frequency is equal to
            // number of element in
            // current range output 1.
            else if (p == q)
                Console.WriteLine("1");
     
            // Else find the GCD of both.
            // If yes, output by dividing
            // both number by gcd to output
            // the answer in reduced form.
            else
            {
                int g = __gcd(p, q);
                Console.WriteLine(p / g
                           + " " + q / g);
            }
        }
    }
     
    // Driven Program
    static public void Main ()
    {
        int []arr = { 6, 5, 2, 1, 7 };
        int n = arr.Length;
        int Q = 2;
        int [,]query = { { 0, 2, 2 },
                         { 1, 2, 5 } };
     
        solveQuery(arr, n, Q, query);
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP program to find probability
// of even or odd elements in a
// given range.
 
// Number of tuples in a query
//static int C = 3;
// Recursive function to return
// gcd of a and b
function __gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
        return 0;
 
    // base case
    if ($a == $b)
        return $a;
 
    // a is greater
    if ($a > $b)
        return __gcd($a - $b, $b);
         
    return __gcd($a, $b - $a);
}
 
// Solve each query of K L R form
function solveQuery($arr, $n, $Q, $query)
{
     
    // To count number of odd and even
    // number upto i-th index.
    // $even = new int[n + 1];
    // int []odd = new int[n + 1];
    $even[0] = $odd[0] = 0;
 
    // Counting number of odd and even
    // integer upto index i
    for ($i = 0; $i < $n; $i++)
    {
 
        // If number is odd, increment
        // the count of odd frequency
        // leave even frequency same.
        if (($arr[$i] & 1) > 0)
        {
            $odd[$i + 1] = $odd[$i] + 1;
            $even[$i + 1] = $even[$i];
        }
 
        // If number is even, increment
        // the count of even frequency
        // leave odd frequency same.
        else
        {
            $even[$i + 1] = $even[$i] + 1;
            $odd[$i + 1] = $odd[$i];
        }
    }
 
    // To solve each query
    for ($i = 0; $i < $Q; $i++)
    {
        $r = $query[$i][2];
        $l = $query[$i][1];
        $k = $query[$i][0];
 
        // Counting total number of
        // element in current query
        $q = $r - $l + 1;
        $p;
 
        // Counting number of odd or
        // even element in current
        // query range
        if ($k > 0)
            $p = $odd[$r] - $odd[$l - 1];
        else
            $p = $even[$r] - $even[$l - 1];
 
        // If frequency is 0, output 0
        if ($p <= 0)
            echo "0" . "\n";
 
        // If frequency is equal to
        // number of element in current
        // range output 1.
        else if ($p == $q)
            echo "1" . "\n";
 
        // Else find the GCD of both.
        // If yes, output by dividing
        // both number by gcd to output
        // the answer in reduced form.
        else
        {
            $g = __gcd($p, $q);
            echo (int)($p / $g) . " " . (int)($q / $g);
        }
    }
}
 
// Driven Program
$arr = array(6, 5, 2, 1, 7);
$n = sizeof($arr);
$Q = 2;
$query = array(array(0, 2, 2),
               array(1, 2, 5));
 
solveQuery($arr, $n, $Q, $query);
 
// This code is contributed
// by Akanksha Rai

Javascript




<script>
// javascript program to find probability
// of even or odd elements in a
// given range.
     
    // Number of tuples in a query
    //static int C = 3;
    // Recursive function to return
    // gcd of a and b
    function  __gcd(a,b)
    {
     
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
       
        // base case
        if (a == b)
            return a;
       
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
               
        return __gcd(a, b - a);
    }
     
    // Solve each query of K L R form
    function solveQuery(arr,n,q,query)
    {
     
        // To count number of odd and even
        // number upto i-th index.
        let even = new Array(n + 1);
        let odd = new Array(n + 1);
        even[0] = odd[0] = 0;
       
        // Counting number of odd and even
        // integer upto index i
        for (let i = 0; i < n; i++)
        {
       
            // If number is odd, increment
            // the count of odd frequency
            // leave even frequency same.
            if ((arr[i] & 1) > 0)
            {
                odd[i + 1] = odd[i] + 1;
                even[i + 1] = even[i];
            }
       
            // If number is even, increment
            // the count of even frequency
            // leave odd frequency same.
            else
            {
                even[i + 1] = even[i] + 1;
                odd[i + 1] = odd[i];
            }
        }
       
        // To solve each query
        for (let i = 0; i < Q; i++)
        {
            let r = query[i][2];
            let l = query[i][1];
            let k = query[i][0];
       
            // Counting total number of
            // element in current query
            let q = r - l + 1;
            let p;
       
            // Counting number of odd or
            // even element in current
            // query range
            if (k > 0)
                p = odd[r] - odd[l - 1];
            else
                p = even[r] - even[l - 1];
       
            // If frequency is 0, output 0
            if (p <= 0)
                document.write("0<br>");
       
            // If frequency is equal to
            // number of element in current
            // range output 1.
            else if (p == q)
                document.write("1<br>");
       
            // Else find the GCD of both.
            // If yes, output by dividing
            // both number by gcd to output
            // the answer in reduced form.
            else
            {
                let g = __gcd(p, q);
                document.write(p / g
                          + " " + q / g+"<br>");
            }
        }
    }
     
     // Driven Program
    let arr=[6, 5, 2, 1, 7];
    let n = arr.length;
    let Q = 2;
    let query = [[0, 2, 2 ],[1, 2, 5]];
    solveQuery(arr, n, Q, query);
     
    // This code is contributed by avanitrachhadiya2155
</script>

Output

0
3 4

Time Complexity: O(n)
Auxiliary Space: O(n)

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Last Updated : 20 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials